Search results for "X-ray binary"
showing 10 items of 82 documents
Models and Astrophysical Parameters of High Mass X-ray Binaries
1996
The objective of this work is the High Mass X-ray Binaries. These systems consist of a neutron star orbiting around a star of spectral type OB. According to the luminosity class of the optical companion they split into Supergiant X-ray binaries and Be/X-ray systems. In both systems the high energy radiation is due to the accretion phenomenum, but in the first case the accreted metter comes from the strong stellar wind of the primary and in the second case it comes from the circumstellar envelope surrounding the Be star equator. In this work I concentrate on the optical and infrared bands of the electromagnetic spectrum although a discussion of the X-ray characteristics for some systems is a…
A method to constrain the neutron star magnetic field in Low Mass X-ray Binaries
2005
We describe here a method to put an upper limit to the strength of the magnetic field of neutron stars in low mass X‐ray binaries for which the spin period and the X‐ray luminosity during X‐ray quiescent periods are known. This is obtained using simple considerations about the position of the magnetospheric radius during quiescent periods. We applied this method to the accreting millisecond pulsar SAX J1808.4‐3658, which shows coherent X‐ray pulsations at a frequency of ∼ 400 Hz and a quiescent X‐ray luminosity of ∼ 5 × 1031 ergs/s, and found that B ⩽ 5 × 108 Gauss in this source. Combined with the lower limit inferred from the presence of X‐ray pulsations, this constrains the SAX J1808.4‐3…
A self-consistent approach to the reflection component in 4U 1705-44
2010
High-resolution spectroscopy has recently revealed in many neutron-star Low-Mass X-ray binaries that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well fitted by a relativistically smeared line profile. We show here spectral fitting results using a newly developed self-consistent reflection model on XMM-Newton data of the LMXB 4U 1705-44 during a period when the source was in a bright soft state. This reflection model adopts a blackbody prescription for the shape of the impinging radiation field, that we physically associate with the boundary layer emission. © 2010 American Institute of Physics.
A Complex Environment around Circinus X-1
2007
We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X-1 during the phase passage 0.223-0.261. We focus on the study of detected emission and absorption features using the HETGS. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low count rate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity. The spectrum of the hard state clearly shows emission lines of highly ionized elements, while, during the flaring state, the spectrum also shows strong resonant absorption lines. The most intense and interesting feature in this …
A relativistically broadened iron line from an Accreting Millisecond Pulsar
2010
The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…
A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1
2015
Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…
Simultaneous radio and X-ray observations of the low-mass X-ray binary GX 13+1
2004
We present the results of two simultaneous X-ray/radio observations of the low-mass X-ray binary GX 13+1, performed in July/August 1999 with the Rossi X-ray Timing Explorer and the Very Large Array. In X-rays the source was observed in two distinct spectral states; a soft state, which had a corresponding 6 cm flux density of ~0.25 mJy, and a hard state, which was much brighter at 1.3-7.2 mJy. For the radio bright observation we measured a delay between changes in the X-ray spectral hardness and the radio brightness of ~40 minutes, similar to what has been found in the micro-quasar GRS 1915+105. We compare our results with those of GRS 1915+105 and the atoll/Z-type neutron star X-ray binarie…
CONTRIBUTION OF PSEUDO-FOCUSED SOFT PROTONS TO THE BACKGROUND OF ATHENA
2021
This PhD thesis explores the role of low energy protons, the so-called ‘soft protons', as a component of the background in view of the future ESA's X-ray mission Athena. As a matter of fact, a high level of soft proton flux at the focal plane of Athena can adversely affect the scientific goals of the mission. To prevent this, a correct estimate of the soft proton flux expected at the focal plane of the satellite is fundamental. Such an estimate can be achieved only if the reflectivity of soft protons from the optics is well understood, with efforts on both the experimental and the theoretical sides. To this aim, I applied the model of reflectivity of particles at grazing incidence proposed …
Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54
2008
Context. The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pul- sations have not been detected in the time range 10−3–103 s. A cyclotron line at ∼30 keV has been suggested by various authors but never detected with significance. The stellar wind of the optical companion is abnormally slow. The orbital period, initially reported to be 9.6 days, disappeared and a new periodicity of 19.25 days emerged. Aims. The main objective of our RXTE monitoring of 4U 2206+54 is to study the X-ray orbital variability of the spectral and timing parameters. The new long and uninterrupted RXTE observations allow us to search for long (∼1 h) puls…
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…