Search results for "X-ray diffraction"

showing 10 items of 280 documents

Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach

2014

The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transit…

DiffractionPhase transitionEquation of stateHigh-pressurePhononSpinelCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsPhase (matter)Physical and Theoretical ChemistryRamanCondensed matter physicsChemistryDefect chalcopyriteSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrdered-vacancy compoundsX-ray diffractionCrystallographyGeneral EnergyFISICA APLICADAsymbolsRaman spectroscopyRaman scattering
researchProduct

High-pressure phase transformations in NdVO4 under hydrostatic, conditions: a structural powder x-ray diffraction study

2019

Room temperature angle dispersive powder x-ray diffraction experiments on zircon-type NdVO4 were performed for the first time under quasi-hydrostatic conditions up to 24.5 GPa. The sample undergoes two phase transitions at 6.4 and 19.9 GPa. Our results show that the first transition is a zircon-to-scheelite-type phase transition, which has not been reported before, and contradicts previous non-hydrostatic experiments. In the second transition, NdVO4 transforms into a fergusonite-type structure, which is a monoclinic distortion of scheelite-type. The compressibility and axial anisotropy of the different polymorphs of NdVO4 are reported. A direct comparison of our results with former experime…

DiffractionPhase transitionEquation of stateMaterials scienceThermodynamics02 engineering and technologyzircon01 natural scienceszircon; scheelite; x-ray diffraction; high pressure; equation of state; phase transition; orthovanadatescheeliteorthovanadatePhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsAnisotropyequation of state021001 nanoscience & nanotechnologyCondensed Matter Physicshigh pressurex-ray diffractionphase transitionX-ray crystallographyCompressibility0210 nano-technologyMonoclinic crystal system
researchProduct

Experimental and Theoretical Studies on alfa-In2Se3 at High Pressure

2018

[EN] alpha(R)-In2Se3 has been experimentally and theoretically studied under compression at room temperature by means of X-ray diffraction and Raman scattering measurements as well as by ab initio total-energy and lattice-dynamics calculations. Our study has confirmed the alpha (R3m) -> beta' (C2/m) ? beta (R (3) over barm) sequence of pressure-induced phase transitions and has allowed us to understand the mechanism of the monoclinic C2/m to rhombohedral R (3) over barm phase transition. The monoclinic C2/m phase enhances its symmetry gradually until a complete transformation to the rhombohedral R (3) over barm structure is attained above 10-12 GPa. The second-order character of this transi…

DiffractionPhase transitionHigh-pressureAb initio02 engineering and technology01 natural sciencesInorganic ChemistryCondensed Matter::Materials Sciencesymbols.namesake0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsRamanPhase transitionIndium selenideChemistry021001 nanoscience & nanotechnologySymmetry (physics)X-ray diffractionCrystallographyFISICA APLICADAX-ray crystallographyAb initiosymbols0210 nano-technologyRaman spectroscopyRaman scatteringMonoclinic crystal system
researchProduct

High-pressure study of the behavior of mineral barite by x-ray diffraction

2011

In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and…

DiffractionPhase transitionMaterials scienceHigh-pressureAnalytical chemistryDensityHigh pressure (Technology)BaSO4symbols.namesakeBariteCationsPhase (matter)Barium compoundsCompostos de bariRamanMineralTemperatureOxidesTecnologia de les altes pressionsCondensed Matter PhysicsX-ray diffractionElectronic Optical and Magnetic MaterialsFISICA APLICADAHigh pressureTransitionX-ray crystallographysymbolsOrthorhombic crystal systemRaman spectroscopyBASO4Physical Review B
researchProduct

High-pressure/high-temperature phase diagram of zinc

2018

The phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300K up to the melting temperature. The pressure at which c/a reaches root 3 (approximate to 10GPa) is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple pol…

DiffractionPhase transitionMaterials sciencemeltingPOWDER DIFFRACTIONELECTRONIC TOPOLOGICAL TRANSITIONSThermodynamicschemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structureZincDIAMOND-ANVIL CELL01 natural scienceshigh temperatureCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONPhase (matter)Condensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physicsMELTING CURVEPhase diagramCondensed Matter - Materials ScienceAxial ratioSYNCHROTRONab initio calculationszincMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCompression (physics)EQUATION-OF-STATEhigh pressurechemistryx-ray diffractionphase transitionZNMETALS0210 nano-technologyRESISTANCE
researchProduct

High-pressure theoretical and experimental study of HgWO4

2011

HgWO 4 at ambient pressure is characterized using a combination of ab initio calculations, X-ray diffraction and Raman scattering measurements. The effect of low pressure and temperature on the structural stability is analysed. Extending our ab initio study to the range of higher pressures, a sequence of stable phases up to 30GPa is proposed. © 2011 Taylor & Francis.

DiffractionRaman scatteringLow pressuresX ray diffractionAb initioExperimental studiesPressure effectsMolecular physicsStable phasisScatteringCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsX raysScatteringChemistryRaman Scattering measurementsTungstatesCondensed Matter PhysicsX-ray diffractionAmbient pressuresAb initio studyStructural stabilityPhase transitionsFISICA APLICADAX-ray crystallographysymbolsStructural stabilitiesTungsten compoundsAb initio calculationsCalculationsDiffractionStabilityRaman scatteringAmbient pressure
researchProduct

Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction

2012

tion that is fundamental for understanding material properties. Still, a number of compounds have eluded such kinds of analysis because they are nanocrystalline, highly disordered, with strong pseudosymmetries or available only in small amounts in polyphasic or polymorphic systems. These materials are crystallographically intractable with conventional Xray or synchrotron radiation diffraction techniques. Single nanoparticles can be visualized by high-resolution transmission electron microscopy (HR-TEM) up to sub�ngstrom resolution, [2] but obtaining 3D information is still a difficult task, especially for highly beam-sensitive materials and crystal structures with long cell parameters. Elec…

DiffractionReflection high-energy electron diffractionmetastable phaseElectron crystallographyChemistryResolution (electron density)Analytical chemistrybiomineralization; calcium carbonate; electron crystallography; metastable phase; structure determinationElectronsGeneral ChemistrybiomineralizationCatalysisNanocrystalline materialstructure determinationAutomationCrystallographyelectron crystallographyX-Ray DiffractionElectron diffractionMicroscopy Electron ScanningNanoparticlescalcium carbonateAntacidsPowder diffractionElectron backscatter diffraction
researchProduct

X-ray diffraction line broadening on vibrating dry-milled Two Crows sepiolite

2006

A reference sample of sepiolite and products of its comminution by vibrating dry-milling have been studied using X-ray diffraction (XRD) line-broadening analysis, complementary field emission scanning electron microscopy (FESEM) images and surface area measurements. The apparent crystallite sizes determined via XRD are in agreement with observations on FESEM images. The sepiolite aggregates consist of lath-shaped agglutinations of prisms and pinacoids elongated along [001], each lath including several crystallites in that direction. The surface area magnitudes are in the range of previous experimental measurements of other sepiolites. The results obtained show the effectiveness of vibro-mil…

DiffractionScanning electron microscopeCrystalline Lattice StrainSepioliteAnalytical chemistrySoil ScienceMineralogyLathengineering.materialchemistry.chemical_compoundReference ClayGeochemistry and PetrologyNevada SepioliteEarth and Planetary Sciences (miscellaneous)Crystallite SizeWater Science and TechnologySepioliteX-ray DiffractionLine BroadeningSurface AreaSilicatechemistryX-ray crystallographyengineeringCrystalliteComminutionGeologyClays and Clay Minerals
researchProduct

Investigation of Silicon Carbide Polytypes by Raman Spectroscopy

2014

Abstract Polytypes of colourless and coloured single crystals of silicon carbide (SiC) grown on SiC substrates by chemical vapour deposition are studied using Raman spectroscopy supplemented by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The SEM analysis of the defect stacking faults, inclusions of defects and their distribution has shown that they correlate with the peak positions of the obtained Raman spectra and with the XRD data on the crystal structure

DiffractionScanning electron microscopePhysicsQC1-999General EngineeringStackingAnalytical chemistryGeneral Physics and AstronomySem analysisChemical vapor depositionCrystal structurex-ray diffraction (xrd)silicon carbide (sic)symbols.namesakechemistry.chemical_compoundraman spectroscopychemistrysymbolsSilicon carbidepolytypesRaman spectroscopyLatvian Journal of Physics and Technical Sciences
researchProduct

Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure

2014

In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa2S4) at high pressures. This compound belongs to the family of AB(2)X(4) ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa2S4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pres…

DiffractionSulfideHigh-pressureAb initioThermodynamicsMechanical propertiesTetragonal crystal systemMaterials ChemistryElastic moduluschemistry.chemical_classificationEquation of stateChalcopyriteMechanical EngineeringMetals and AlloysElasticityX-ray diffractionCrystallographychemistrySemiconductorsMechanics of Materialsvisual_artFISICA APLICADAX-ray crystallographyCompressibilityvisual_art.visual_art_medium
researchProduct