Search results for "X-rays."

showing 10 items of 443 documents

Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

2018

We propose a novel method to constrain turbulence and bulk motions in massive galaxies, groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (10^7 K) are perturbed by subsonic turbulence, warm (10^4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked via the ensemble (wide-aperture) velocity dispersion along the line o…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics01 natural sciencesSpectral lineGalaxy groupAbsorption (logic)010303 astronomy & astrophysicsLine (formation)hydrodynamicPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Velocity dispersionPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)active [galaxies]astro-ph.COspectroscopic [techniques]Astrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics[ INFO ] Computer Science [cs]Cosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GAgalaxies: activeFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsISM [radio lines]0103 physical sciences[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]/dk/atira/pure/subjectarea/asjc/1900/1912[INFO]Computer Science [cs]Astrophysics::Galaxy Astrophysicsradio lines: ISM010308 nuclear & particles physicsMolecular cloudturbulenceFluid Dynamics (physics.flu-dyn)Astronomy and AstrophysicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesX-rays: galaxies: clusterGalaxyAccretion (astrophysics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]physics.flu-dynphysics.comp-phSpace and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)hydrodynamics/dk/atira/pure/subjectarea/asjc/3100/3103galaxies: clusters [X-rays][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]techniques: spectroscopic
researchProduct

The 30 Year Search for the Compact Object in SN 1987A

2018

Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstrophysicsPhysical Chemistry01 natural sciences7. Clean energyAtomicLuminosityParticle and Plasma PhysicsQB460Astrophysics::Solar and Stellar AstrophysicsAbsorption (logic)10. No inequality010303 astronomy & astrophysicsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)SUPERNOVA REMNANT 1987ASupernovaAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesPhysical Chemistry (incl. Structural)NEUTRON-STARSCIRCUMSTELLAR RINGX-RAYSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBLUE SUPERGIANTSAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starAstronomy & Astrophysicsstars: neutronneutron [stars]Pulsarindividual [supernovae]0103 physical sciencesblack holes [stars]NuclearINTEGRAL FIELD SPECTROSCOPY010306 general physicsUNDERGROUND SCINTILLATION TELESCOPEsupernovae: individualAstrophysics::Galaxy AstrophysicsOrganic ChemistryMolecularAstronomy and AstrophysicsHUBBLE-SPACE-TELESCOPEEffective temperatureNeutron starRAY EMISSION-LINESPhysics and Astronomyindividual (SN 1987A) [supernovae]13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUD[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: black holes
researchProduct

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar

2017

We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesAstrophysics01 natural sciencesstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesaccretion accretion disks stars: neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44010303 astronomy & astrophysicsLine (formation)Spin-½PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsEquation of state (cosmology)neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44 [accretion accretion disks stars]accretion disksAstronomy and AstrophysicsRadiusNeutron starReflection (mathematics)Space and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individualDimensionless quantity
researchProduct

The Deep Rho Ophiuchi XMM-Newton Observation (DROXO)

2005

International audience; We present the X-ray data and the analysis status of the DROXO (Deep Rho Oph XMM-Newton Observation) project, aimed to mainly characterize the spectro-variability properties of YSOs in the nearby and very young ρ Oph star forming region. We focus on a few selected initial scientific results for few interesting YSOs, such as Elias 29 and YLW16A. In Elias 29 we see the 6.4 keV fluorescent Fe line as already reported in literature, whereas in YLW16A we do not detect the fluorescent line at odd with previous findings. Hence we conclude that the line intensity does change with time (and/or physical conditions).

[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]stars : individual : rho Ophiuchistars : formation[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]X-rays : star
researchProduct

The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

2014

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Observatories ; Sensors ; X-rays ; Equipment and services ; X-ray sourcesComputer scienceObservatoriesFOS: Physical sciencesX-ray sources01 natural sciences7. Clean energyX-rayLoftObservatoryRange (aeronautics)0103 physical sciencesX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic Engineering010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Compact Objects; Timing; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringRemote sensingMillisecondEquipment and servicesCompact Objects010308 nuclear & particles physicsLarge area detectorSensorsApplied MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron starAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

LOFT: the Large Observatory For X-ray Timing

2012

The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV,…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]VisionX-ray timingAstronomySPIE ProceedingsObservatoriesX-ray timing X-ray spectroscopy X-ray imaging compact objectsSilicon Drift ChambersFOS: Physical sciencesddc:500.2X-ray missionsSpace (mathematics)Astrophysics01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-rays0103 physical sciencesElectronicOptical and Magnetic MaterialsInstrumentation (computer programming)Electrical and Electronic EngineeringAerospace engineeringDiagnosticsCompact objects010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSpatial resolutionsezeleSensors010308 nuclear & particles physicsbusiness.industryApplied MathematicsX-ray imagingSilicon Drift ChamberComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCompact objects; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]X-ray spectroscopySilicon Drift Chambers; X-ray missionsInstrumentation and Methods for AstrophysicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

X-ray irradiation influence on prototype Er3+-optical fibers: confocal luminescence study

2010

International audience; The integration of rare-earth doped optical fibers as part of fiber-based systems in space implies the development of waveguides tolerant to the radiation levels associated with the space missions. We report the spatial distribution, the photoluminescence (PL) properties of color centers and the related changes induced by X-rays radiation at different doses (50, 500 and 1000 krad) for two different prototypes of Er-doped optical fibers. Each sample (in the version pristine, X-irradiated and H2 loaded prior to radiation exposure) was characterized by confocal microscopy luminescence (CML) measurements in Visible range with Visible (488 nm) or UV (325 nm) laser light e…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials sciencePhotoluminescenceoptical fibersAnalytical chemistryPhysics::OpticsRadiationLaserlaw.inventionIonlawRare-EarthsX-rays effectluminescenceH2 loadingFiberRare-Earths optical fibers luminescence X-rays effect CML H2 loadingLuminescenceAbsorption (electromagnetic radiation)CML
researchProduct

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28

2017

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …

accretion accretion discAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEphemeris01 natural sciencesstars: neutronQuadratic equationPulsar0103 physical sciencesTorque010303 astronomy & astrophysicsGroup delay and phase delayHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsneutron; X-rays: binaries; X-rays: individual: GRO J1744-28 [accretion accretion disc; stars]Static timing analysisAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individual: GRO J1744-28X-ray pulsarMonthly Notices of the Royal Astronomical Society
researchProduct

The enigmatic young brown dwarf binary FU Tau: accretion and activity

2010

FU Tau belongs to a rare class of young, wide brown dwarf binaries. We have resolved the system in a Chandra X-ray observation and detected only the primary, FU Tau A. Hard X-ray emission, presumably from a corona, is present but, unexpectedly, we detect also a strong and unusually soft component from FU Tau A. Its X-ray properties, so far unique among brown dwarfs, are very similar to those of the T Tauri star TW Hya. The analogy with TW Hya suggests that the dominating soft X-ray component can be explained by emission from accretion shocks. However, the typical free-fall velocities of a brown dwarf are too low for an interpretation of the observed X-ray temperature as post-shock region. O…

accretion accretion discs stars: activity brown dwarfs stars: pre-main-sequence X-rays: starsSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Mass accretion to young stars triggered by flaring activity in circumstellar discs

2011

Young low-mass stars are characterized by ejection of collimated outflows and by circumstellar discs which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn remove the excess angular momentum from the star-disc system. However, although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. A point not considered to date and relevant for the accretion process is the evidence of very energetic and frequent flaring events in these stars. Flares may easily perturb the stability of the discs, thus influencing th…

accretion; accretion discs; MHD; circumstellar matter; stars: flare; stars: pre-main-sequence; X-rays: starsSettore FIS/05 - Astronomia E AstrofisicaaccretionMHDstars: flarestars: pre-main-sequenceX-rays: starsaccretion accretion discs MHD circumstellar matter stars: flare stars: pre-main-sequence X-rays: starsaccretion discscircumstellar matterflare stars: pre-main-sequence X-rays: stars [accretion accretion discs MHD circumstellar matter stars]
researchProduct