Search results for "XENON"

showing 10 items of 172 documents

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

Corrigendum to “Light-induced, site-selective isomerization of glyoxylic acid in solid xenon” [Chem. Phys. Lett. 616–617 (2014) 91–97]

2015

chemistry.chemical_compoundXenonchemistrySite selectiveLight inducedGeneral Physics and Astronomychemistry.chemical_elementPhysical and Theoretical ChemistryPhotochemistryIsomerizationGlyoxylic acidChemical Physics Letters
researchProduct

Photochemistry of the H2O/CO System Revisited : The HXeOH···CO Complex in a Xenon Matrix

2017

We report on the complex of a noble-gas hydride HXeOH with carbon monoxide. This species is prepared via the annealing-induced H + Xe + OH···CO reaction in a xenon matrix, the OH···CO complexes being produced by VUV photolysis of the H2O···CO complexes. The H–Xe stretching mode of the HXeOH···CO complex absorbs at 1590.3 cm–1 and it is blue-shifted by 12.7 cm–1 from the H–Xe stretching band of HXeOH monomer. The observed blue shift indicates the stabilization of the H–Xe bond upon complexation, which is characteristic of complexes of noble-gas hydrides. The HXeOH···CO species is the first complex of a noble-gas hydride with carbon monoxide and the second observed complex of HXeOH. On the ba…

chemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencescarbon monoxidechemistry.chemical_compoundXenonmatricesNon-covalent interactionsMoleculegasesPhysical and Theoretical Chemistryta116chemistry.chemical_classificationphotochemistryHydrideIntermolecular forcePhotodissociation021001 nanoscience & nanotechnology0104 chemical sciencesMonomerchemistryH2O/CO system0210 nano-technologyCarbon monoxideJournal of Physical Chemistry C
researchProduct

Optimized Continuous Application of Hyperpolarized Xenon to Liquids

2018

International audience; In recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g. cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e. molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129 Xe continuously at small adjustable pressures and in a polarization-prese…

chemistry.chemical_elementhollow fiber membranes010402 general chemistryResidence time (fluid dynamics)01 natural sciencesCryptophane030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineXenonmagnetic resonance imaging[CHIM]Chemical SciencesPhysical and Theoretical ChemistryPolarization (electrochemistry)DissolutionAqueous solution129XeNMR0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrynuclear magnetic resonanceMembranechemistryChemical physicscompressorGas compressortransfer
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Improved calculations of beta decay backgrounds to new physics in liquid xenon detectors

2020

We present high-precision theoretical predictions for the electron energy spectra for the ground-state to ground-state $\beta$ decays of $^{214}$Pb, $^{212}$Pb, and $^{85}$Kr most relevant to the background of liquid xenon dark matter detectors. The effects of nuclear structure on the spectral shapes are taken into account using large-scale shell model calculations. Final spectra also include atomic screening and exchange effects. The impact of nuclear structure effects on the $^{214}$Pb and $^{212}$Pb spectra below $\approx100$ keV, pertinent for several searches for new physics, are found to be comparatively larger than those from the atomic effects alone. We find that the full calculatio…

electronElectron01 natural sciencesSpectral lineHigh Energy Physics - ExperimentspectrumHigh Energy Physics - Experiment (hep-ex)Xenon[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysground stateNuclear Experiment (nucl-ex)Nuclear Experimentnuclear instrumentationPhysicsinstrumentationxenon: liquidnew physics: search forNuclear structureaxial-vectorsemileptonic decayCoupling (probability)simulation3. Good healthradioactivityGround stateionizing radiationSemileptonic decay[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]energy spectrumFOS: Physical scienceschemistry.chemical_elementspectrum analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physics0103 physical sciencesstructure[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationssignal processingPseudovectorkryptonnucleus: semileptonic decayleaddetector010308 nuclear & particles physicsbackgroundscreeningDecay data measurementshell modelnuclear matter: effectdark matter: detector[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationcoupling: axial-vectorxenonmetrologychemistry13. Climate actionspectralelectron: energy spectrum
researchProduct

Light-induced, site-selective isomerization of glyoxylic acid in solid xenon

2014

Abstract The isomerization of glyoxylic acid (GA) and its water complex was studied in a low temperature xenon matrix. The aim of these studies was to understand how xenon environment affects the cis-trans GA interconversion upon near infrared irradiation. In solid xenon, the GA conformers are embedded in two different matrix sites. These show up as different vibrational bands of GA that exhibit different kinetic rates of isomerization. Upon complexation with water, the isomerization process slows down. Xenon matrix appears not to affect energy relaxation process via intramolecular or intermolecular hydrogen bond as compared with previous experiments in an argon.

inorganic chemicalsArgonintegumentary systemHydrogen bondIntermolecular forceGeneral Physics and Astronomychemistry.chemical_elementPhotochemistrychemistry.chemical_compoundXenonchemistryIntramolecular forcePhysical and Theoretical Chemistryta116Conformational isomerismIsomerizationGlyoxylic acidcirculatory and respiratory physiologyChemical Physics Letters
researchProduct

NMR Spectroscopic Evidence for the Intermediacy of XeF3– in XeF2/F– Exchange, Attempted Syntheses and Thermochemistry of XeF3– Salts, and Theoretical…

2010

The existence of the trifluoroxenate(II) anion, XeF3−, had been postulated in a prior NMR study of the exchange between fluoride ion and XeF2 in CH3CN solution. The enthalpy of activation for this exchange, ΔH⧧, has now been determined by use of single selective inversion 19F NMR spectroscopy to be 74.1 ± 5.0 kJ mol−1 (0.18 M) and 56.9 ± 6.7 kJ mol−1 (0.36 M) for equimolar amounts of [N(CH3)4][F] and XeF2 in CH3CN solvent. Although the XeF3− anion has been observed in the gas phase, attempts to prepare the Cs+ and N(CH3)4+ salts of XeF3− have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF2 and fluoride ion solvation in CH3CN solution. The XeF3− anion would rep…

ksenon fluoriditxenon fluorides
researchProduct

Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

2002

The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed

massaspektrometriaatomic massesXenon isotopesPhysics::Instrumentation and Detectorspenning trapNuclear Experimentradioactive ions
researchProduct