Search results for "XENON"
showing 10 items of 172 documents
Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors
2019
We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons. In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)] has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an interpretation in terms of electron-interacting WIMPs cannot be consistent with ex…
Dark Matter Search Results from a One Ton-Year Exposure of XENON1T
2018
We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions exclude…
Femtosecond coherent anti-Stokes Raman-scattering polarization beat spectroscopy of I2–Xe complex in solid krypton
2006
Time-resolved coherent anti-Stokes Raman-scattering (CARS) measurements are carried out to study the interaction between xenon atom and iodine molecule in a solid krypton matrix. Interference between the CARS polarizations of the "free" and complexed iodine molecules is observed, while the quantum beats of the complex are not detected due to low concentration. Vibrational analysis based on the polarization beats yields accurate molecular constants for the I2-Xe complex. The harmonic frequency of the I2-Xe complex is found to be redshifted by 0.90 cm-1 when compared to the free I2, whereas the anharmonicity is approximately the same. The dephasing rate of the complex is found to be somewhat …
Search for Coherent Elastic Scattering of Solar B8 Neutrinos in the XENON1T Dark Matter Experiment
2021
We report on a search for nuclear recoil signals from solar $^8$B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 keV to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant $^8$B neutrino-like excess is found in an exposure of 0.6 t $\times$ y. For the first time, we use the non-detection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as non-standard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 GeV/…
Electroluminescence TPCs at the thermal diffusion limit
2019
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM
Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC
2013
We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-…
The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes
2015
Electronic structure of the XeOF2 molecule and its two complexes with HX (X= F, Cl, Br, I) molecules have been studied in the gas phase using quantum chemical topology methods: topological analysis of electron localization function (ELF), electron density, ρ(r), reduced gradient of electron density |RDG(r)| in real space, and symmetry adapted perturbation theory (SAPT) in the Hilbert space. The wave function has been approximated by the MP2 and DFT methods, using APF-D, B3LYP, M062X, and B2PLYP functionals, with the dispersion correction as proposed by Grimme (GD3). For the Xe-F and Xe=O bonds in the isolated XeOF2 molecule, the bonding ELF-localization basins have not been observed. Accord…
Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture
2014
[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…
Investigation of the noble gas solubility in H2O–CO2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EIP) model
2000
A semi-theoretical model is proposed to predict partitioning of noble gases between any silicate liquid and a H2O–CO2 gas phase with noble gas as a minor component, in a large range of pressures (at least up to 300 MPa). The model is based on the relationship between the concentration of dissolved noble gas and ionic porosity of the melt, found by Carroll and Stolper [Geochim. Cosmochim. Acta 57 (1993) 5039–5051] for H2O–CO2 free melts. It evaluates the effect of dissolved H2O and CO2 on the melt ionic porosity and, consequently on Henry’s constants of noble gases. The fugacities of the noble gases in the H2O–CO2–noble gas mixtures are also considered in our equilibrium calculations of diss…
Spatial Diagnostics of Hg/Ar and Hg/Xe Discharge Lamps by Means of Tomography
2011
In this work, the diagnostics using tomography in Hg/Xe and Hg/Ar capillary lamps is presented. First, the imaging of the lamps was performed using selected emission lines of mercury, argon and xenon in different operation conditions. Thus the tomographic reconstruction was made, to determine the spatial distribution of the emitting Hg and rare gas atoms. Significant differences of the distribution of the emitting atoms have been found in vertical and horizontal operation positions. The emitting mercury atoms in the state 73S1 were differently distributed within the lamp in the vertical and horizontal lamp positions. The radial profile has demonstrated a substantial depletion of the popula…