Search results for "XENON"
showing 10 items of 172 documents
Investigation of gaseous discharge ion sources for isotope separation on-line
1976
Abstract Gaseous discharge ion sources with circular end extraction have been investigated with the aim of meeting the special requirements of on-line isotope separation. The studies represent an attempt to increase lifetime, temperature and ionization efficiency of the ion source under stable discharge conditions and to reduce the ion current density of usually 1–100 mA/cm2 of low intensity separator sources. The detailed investigation of a modified Nielsen Ion Source is described. The source yields in oscillating electron are operation reproducible ionization efficiencies of 32% for krypton and 45% for xenon. It was found that minor variations of geometry and potentials in a Nielsen-type …
SiPMs coated with TPB: coating protocol and characterization for NEXT
2012
[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…
Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project
2011
The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. However, the risk of contamination of the detector with traces of the much longer lived mother isotop 83Rb (86.2 d half-life) has to be ruled out. In this work the release of 83Rb atoms from a 1.8 MBq 83Rb source embedded in zeolite beads has been investigated. To do so, a cryogenic trap has been connected to the source for about 10 days, after which it was removed and probed for the strongest 83Rb gamma-rays with an ultra-sensitive Germanium detector. No signal has been found. The corresponding upper limit on the released 83Rb activity means tha…
Incident angle effect on heavy ion induced reverse leakage current in SiC Schottky diodes
2016
Heavy-ion induced degradation in the reverse leakage current of SiC Schottky power diodes shows distinct dependence on the angle of incidence. TCAD simulations have been used to study the physical mechanisms involved.
Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics.
2019
Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2 /Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition ( 320 h). Thi…
Photo-assisted O− and Al− production with a cesium sputter ion source
2021
It has been recently proposed that the production of negative ions with cesium sputter ion sources could be enhanced by laser-assisted resonant ion pair production. We have tested this hypothesis by measuring the effect of pulsed diode lasers at various wavelengths on the O− and Al− beam current produced from Al2O3 cathode of a cesium sputter ion source. The experimental results provide evidence for the existence of a wavelength-dependent photo-assisted enhancement of negative ion currents but cast doubt on its alleged resonant nature as the effect is observed for both O− and Al− ions at laser energies above a certain threshold. The beam current transients observed during the laser pulses s…
Mapping protein matrix cavities in human cytoglobin through Xe atom binding
2004
Abstract Cytoglobin is the fourth recognized globin type, almost ubiquitously distributed in human tissues; its function is still poorly understood. Cytoglobin displays a core region of about 150 residues, structurally related to hemoglobin and myoglobin, and two extra segments, about 20 residues each, at the N- and C-termini. The core region hosts a large apolar cavity, held to provide a ligand diffusion pathway to/from the heme, and/or ligand temporary docking sites. Here we report the crystal structure (2.4 A resolution, R -factor 19.1%) of a human cytoglobin mutant bearing the CysB2(38) → Ser and CysE9(83) → Ser substitutions (CYGB*), treated under pressurized xenon. Three Xe atoms bind…
First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
2018
We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, …
A simple expression for electronic stopping force of heavy ions in solids
2012
Abstract A simple expression for the electronic stopping force of heavy ions in solids is proposed based on an adaption of the Bohr’s classical stopping theory. A three-parameter model is constructed by using experimental data for helium, oxygen, argon, krypton and xenon ions in carbon, aluminum, nickel and gold targets at energies from 600 eV/u to 985 MeV/u. Total average agreements between the model and used experimental data are (−4.5 ± 47)% and (−1.6 ± 7.4)% at energies below and above the Bragg peak, respectively. The good overall agreement makes this model a good candidate for future development in stopping force prediction tools.
Study of the electromagnetic background in the XENON100 experiment
2011
The XENON100 experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. We present a comprehensive study of the predicted electronic recoil background coming from radioactive decays inside the detector and shield materials, and intrinsic contamination. Based on GEANT4 Monte Carlo simulations using a detailed geometry together with the measured radioactivity of all detector components, we predict an electronic recoil background in the WIMP-search energy range (0-100 keV) in the 30 kg fiducial mass of less than 10e-2 events/(kg-day-keV), co…