Search results for "Zigzag"

showing 10 items of 59 documents

Exploring the graphene edges with coherent electron focusing

2010

We study theoretically the coherent electron focusing in graphene nanoribbons. Using semiclassical and numerical tight binding calculations we show that perfect armchair edges give rise to equidistant peaks in the focusing spectrum. In the case of zigzag edges at low magnetic fields one can also observe focusing peaks but with increasing magnetic field a more complex interference structure emerges in the spectrum. This difference in the spectra can be observed even if the zigzag edge undergoes structural reconstruction. Therefore transverse electron focusing can help in the identification and characterisation of the edge structure of graphene samples.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneFOS: Physical sciencesSemiclassical physicsElectronCondensed Matter PhysicsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionMagnetic fieldZigzaglawBallistic conductionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Graphene nanoribbons
researchProduct

On the theoretical analysis of the lowest many-electron states for cyclic zigzag graphene nano-ribbons

2014

We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree?Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o?. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with t…

PhysicsCondensed matter physicsDegenerate energy levelsHartreeEigenfunctionCondensed Matter PhysicsFull configuration interactionAtomic and Molecular Physics and OpticsFock spacesymbols.namesakeZigzagsymbolsMolecular orbitalHamiltonian (quantum mechanics)Mathematical PhysicsPhysica Scripta
researchProduct

Optical studies of gap, hopping energies, and the Anderson-Hubbard parameter in the zigzag-chain compoundSrCuO2

2001

We have investigated the electronic structure of the zig-zag ladder (chain) compound ${\mathrm{SrCuO}}_{2}$ combining polarized optical absorption, reflection, photoreflectance, and pseudo-dielectric-function measurements with the model calculations. These measurements yield an energy gap of 1.42 eV (1.77 eV) at 300 K along (perpendicular to) the Cu-O chains. We have found that the lowest-energy gap, the correlation gap, is temperature independent. The electronic structure of this oxide is calculated using both the local-spin-density approximation with gradient correction method and the tight-binding theory for the correlated electrons. The calculated density of electronic states for noncor…

PhysicsCondensed matter physicsZigzagComputer Science::Systems and ControlBand gapCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialAbsorption (logic)ElectronElectronic structureAtomic physicsElectronic band structureSpin-½Physical Review B
researchProduct

Tracking local magnetic dynamics via high-energy charge excitations in a relativistic Mott insulator

2016

We use time- and energy-resolved optical spectroscopy to investigate the coupling of electron-hole excitations to the magnetic environment in the relativistic Mott insulator Na$_2$IrO$_3$. We show that, on the picosecond timescale, the photoinjected electron-hole pairs delocalize on the hexagons of the Ir lattice via the formation of quasi-molecular orbital (QMO) excitations and the exchange of energy with the short-range-ordered zig-zag magnetic background. The possibility of mapping the magnetic dynamics, which is characterized by typical frequencies in the THz range, onto high-energy (1-2 eV) charge excitations provides a new platform to investigate, and possibly control, the dynamics of…

PhysicsElectronic Optical and Magnetic Materials; Condensed Matter PhysicsHigh energyCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Terahertz radiationMott insulatorFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore FIS/03 - FISICA DELLA MATERIA01 natural sciences3. Good healthCondensed Matter - Strongly Correlated ElectronsZigzagPicosecondLattice (order)0103 physical sciencesElectronicddc:530Optical and Magnetic Materials010306 general physics0210 nano-technologySpectroscopy
researchProduct

Closed Busse balloon for rolls and skew-varicose instability in a Swift-Hohenberg model with nonlinear resonance

1998

Abstract A Swift-Hohenberg model incorporating a nonlinear resonance is shown to produce stable rolls only in a closed region of the parameter space. This Busse balloon is limited by zigzag and Eckhaus boundaries. A skew-varicose instability outside the balloon also exists. Implications with nonlinear optics and hydrodynamic convection are commented.

Physics::Fluid DynamicsConvectionPhysicsClassical mechanicsZigzagNonlinear resonanceSkewGeneral Physics and AstronomyNonlinear opticsParameter spaceBalloonNonlinear Sciences::Pattern Formation and SolitonsInstabilityPhysics Letters A
researchProduct

Structural and Magnetic Characterization of a μ-1,5-Dicyanamide-Bridged Iron Basic Carboxylate [Fe3O(O2C(CH3)3)6] 1D Chain

2008

We are reporting an unprecedented example of a mu-1,5-dicyanamide (dca)-bridged iron basic carboxylate, [Fe3O(O2C(CH3)3)6], 1D chain. As revealed from X-ray determination, the Fe3O cores are arranged in a zigzag configuration along the chain and strictly aligned in the same plane. The chains are well-isolated by the bulky tert-butyl groups. Magnetic measurements showed that the Fe3O units are weakly antiferromagnetically coupled (J = -0.6 cm(-1)) through the dca ligand while possessing a well-isolated S = 1/2 spin ground state arising from competing antiferromagnetic interactions.

StereochemistryLigandInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryChain (algebraic topology)ZigzagAntiferromagnetismCarboxylatePhysical and Theoretical ChemistryGround stateSpin (physics)DicyanamideInorganic Chemistry
researchProduct

DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes

2011

Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube ri…

Steric effectsNanotubeMaterials scienceBiomedicine generalCarboxylic AcidsSubstituentHealth InformaticsCarbon nanotubeDFTCatalysislaw.inventionEnd-substitutionInorganic Chemistrychemistry.chemical_compoundCarboxylation energylawOrganic chemistryComputer SimulationComputer Applications in ChemistryPhysical and Theoretical ChemistryAnthracenesLife Sciences generalOriginal PaperNanotubes CarbonOrganic ChemistryZigzag and armchair SWCNTBenzoic AcidPhenanthrenesComputer Science ApplicationsChemistryCrystallographyModels ChemicalComputational Theory and MathematicschemistryZigzagComputer Appl. in Life SciencesQuantum TheoryThermodynamicsMolecular MedicineSurface modificationCOOH functionalization
researchProduct

Theoretical study of the interaction between sodium ion and a cyclopeptidic tubular structure.

2007

DFT calculations have been carried out to describe the pathway of a sodium ion along the stacking direction of a tubular structure set up by five cyclopeptidic units, which can be considered a suitable model of a hollow tubular structure of indefinite length. A lattice of points inside the tubular structure is defined and the DFT interaction energy values with a sodium ion are obtained. The data allow predicting a zigzag path of the ion inside the hosting structure. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

Tubular aggregates alkaline ions DFTModels MolecularNanotubes PeptideNanotubeChemistrySodiumSodiumStackingGlycineMolecular Conformationchemistry.chemical_elementGeneral ChemistryInteraction energyMolecular physicsPeptides CyclicIonComputational MathematicsZigzagComputational chemistryLattice (order)ThermodynamicsComputer SimulationOligopeptidesJournal of computational chemistry
researchProduct

DFT calculations of structures, 13C NMR chemical shifts, and Raman RBM mode of simple models of small‐diameter zigzag (4,0) carboxylated single‐walle…

2012

Linearly conjugated benzene rings (acenes), belt‐shaped molecules (cyclic acenes), and models of single‐walled carbon nanotubes (SWCNTs) with one carboxylic group at the open end were fully optimized at the B3LYP/6‐31G* level of theory. These models were selected to obtain some insight into the nuclear isotropic changes resulting from systematically increasing the basic building units of open‐tip‐monocarboxylated SWCNTs. In addition, the position of radial breathing mode (RBM), empirically correlated with the SWCNT diameter, was directly related with the radius of model cyclic acene rings. A regular convergence of selected structural, NMR, and Raman parameters with the molecular system size…

acenes0) SWCNT modelRaman RBM modezigzag (4COOH functionalizationDFTNMRMagnetic Resonance in Chemistry
researchProduct

DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs)

2011

Linearly conjugated benzene rings (acenes), belt‐shape molecules (cyclic acenes) and model single wall carbon nanotubes (SWCNTs) were fully optimized at the unrestricted level of density functional theory (UB3LYP/6‐31G*). The models of SWCNTs were selected to get some insight into the potential changes of NMR chemical shift upon systematic increase of the molecular size. The theoretical NMR chemical shifts were calculated at the B3LYP/pcS‐2 level of theory using benzene as reference. In addition, the change of radial breathing mode (RBM), empirically correlated with SWCNT diameter, was directly related with the radius of cyclic acenes. Both geometrical and NMR parameters were extrapolated t…

acenesbelt moleculesmodel (40) zigzag SWCNTnuclear isotropic shieldingDFTMagnetic Resonance in Chemistry
researchProduct