Search results for "ab initio"

showing 10 items of 990 documents

Negative pressures in CaWO4 nanocrystals

2009

Tetragonal scheelite-type CaWO4 nanocrystals recently prepared by a hydrothermal method show an enhancement of its structural symmetry with the decrease in nanocrystal size. The analysis of the volume dependence of the structural parameters in CaWO4 nanocrystals with the help of ab initio total-energy calculations shows that the enhancement of the symmetry in the scheelite-type nanocrystals is a consequence of the negative pressure exerted on the nanocrystals; i.e., the nanocrystals are under tension. Besides, the behavior of the structural parameters in CaWO4 nanocrystals for sizes below 10 nm suggests an onset of a scheelite-to-zircon phase transformation in good agreement with the predic…

Phase transitionMaterials scienceCalcium compoundsAb initioUNESCO::FÍSICAGeneral Physics and AstronomyNanoparticleNanostructured materialsCrystal symmetryCrystallographyTetragonal crystal systemNanocrystalAb initio quantum chemistry methodsChemical physicsTotal energy:FÍSICA [UNESCO]Phase (matter)Ab initio calculations ; Calcium compounds ; Crystal growth from solution ; Crystal symmetry ; Nanostructured materials ; Solid-state phase transformations ; Total energySolid-state phase transformationsAb initio calculationsCrystal growth from solutionMonoclinic crystal system
researchProduct

Phase transitions in wolframite-typeCdWO4at high pressure studied by Raman spectroscopy and density-functional theory

2009

Room-temperature Raman scattering was measured in ${\text{CdWO}}_{4}$ up to 43 GPa. We report the pressure dependence of all the Raman-active phonons of the low-pressure wolframite phase. As pressure increases changes in the Raman spectra are detected at 20 and 35 GPa due to the onset of reversible structural phase transitions. We also report ab initio total-energy and lattice-dynamics calculations for the different phases of ${\text{CdWO}}_{4}$. They helped us determine the crystalline structure of the high-pressure phases. Experimental and theoretical results suggest the coexistence of two structures from 20 to 35 GPa: one with tetragonal symmetry and another with triclinic symmetry. Beyo…

Phase transitionMaterials scienceCondensed matter physicsAb initio02 engineering and technologyCrystal structureTriclinic crystal system021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeTetragonal crystal system0103 physical sciencessymbols010306 general physics0210 nano-technologyRaman spectroscopyRaman scatteringMonoclinic crystal systemPhysical Review B
researchProduct

Lattice dynamics ofYVO4at high pressures

2010

We report an experimental and theoretical lattice-dynamics study of yttrium orthovanadate $({\text{YVO}}_{4})$ up to 33 GPa together with a theoretical study of its structural stability under pressure. Raman-active modes of the zircon phase are observed up to 7.5 GPa, where the onset of an irreversible zircon-to-scheelite phase transition is detected, and Raman-active modes in the scheelite structure are observed up to 20 GPa, where a reversible second-order phase transition occurs. Our ab initio total-energy calculations support that the second-order phase transition in ${\text{YVO}}_{4}$ is from the scheelite to the monoclinic M-fergusonite structure. The M-fergusonite structure remains u…

Phase transitionMaterials scienceCondensed matter physicsAb initioCondensed Matter PhysicsElectronic Optical and Magnetic Materialschemistry.chemical_compoundsymbols.namesakechemistryScheeliteMetastabilityPhase (matter)symbolsYttrium orthovanadateRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct

Putting the Squeeze on Lead Chromate Nanorods.

2019

We have studied by means of X-ray diffraction and Raman spectroscopy the high-pressure behavior of PbCrO4 nanorods. We have found that these nanorods follow a distinctive structural sequence that differs from that of bulk PbCrO4. In particular, a phase transition from a monoclinic monazite-type PbCrO4 to a novel monoclinic AgMnO4-type polymorph has been discovered at 8.5 GPa. The crystal structure, Raman-active phonons, and compressibility of this novel high-pressure phase are reported for the first time. The experimental findings are supported by ab initio calculations that provide information not only on structural and vibrational properties of AgMnO4-type PbCrO4 but also on the electroni…

Phase transitionMaterials scienceCondensed matter physicsBand gap02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencessymbols.namesakeAb initio quantum chemistry methodsPhase (matter)symbolsGeneral Materials ScienceNanorodPhysical and Theoretical Chemistry0210 nano-technologyRaman spectroscopyMonoclinic crystal systemThe journal of physical chemistry letters
researchProduct

High-pressure phases, vibrational properties, and electronic structure ofNe(He)2andAr(He)2: A first-principles study

2009

We have carried out a comprehensive first-principles study of the energetic, structural, and electronic properties of solid rare-gas RG-helium binary compounds, in particular, NeHe2 and ArHe2, under pressure and at temperatures within the range of 0T2000 K. Our approach is based on density-functional theory and the generalized gradient approximation for the exchange-correlation energy; we rely on total Helmholtz freeenergy calculations performed within the quasiharmonic approximation for most of our analysis. In NeHe2, we find that at pressures of around 20 GPa the system stabilizes in the MgZn2 Laves structure, in accordance to what was suggested in previous experimental investigations. In…

Phase transitionMaterials scienceCondensed matter physicsElectronic structureHard spheresLaves phaseCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeAb initio quantum chemistry methodsHelmholtz free energyPhase (matter)symbolsPhase diagramPhysical Review B
researchProduct

Molecular dynamics study of high-pressure alumina polymorphs with a tight-binding variable-charge model

2016

Abstract A tight-binding variable-charge model aimed at performing large-scale realistic simulations of bulk, surfaces and interfaces of aluminum oxides have been developed. This model is based on the charge equilibration (QEq) method and explicitly takes into account the mixed iono–covalent character of the metal–oxygen bond by means of a tight-binding analytical approach in the second-moment approximation of the electronic structure. The parameters of the model were optimized to reproduce structural and energetic properties of the α-Al2O3 corundum structure at room temperature and pressure. The model exhibits a good transferability between five alumina polymorphs: corundum, Rh2O3(II)-type…

Phase transitionMaterials scienceGeneral Computer ScienceAb initioGeneral Physics and AstronomyThermodynamicsCorundum02 engineering and technologyGeneral ChemistryElectronic structureTriclinic crystal systemengineering.material021001 nanoscience & nanotechnology01 natural sciencesComputational MathematicsMolecular dynamicsTight bindingMechanics of MaterialsComputational chemistry0103 physical sciencesengineeringGeneral Materials Science010306 general physics0210 nano-technologyPerovskite (structure)Computational Materials Science
researchProduct

Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity.

2021

[EN] YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation o…

Phase transitionMaterials scienceHigh-pressure02 engineering and technology010402 general chemistryInelastic light scattering01 natural sciencessymbols.namesakeAb initio quantum chemistry methodsMaterials ChemistryAnisotropyBulk modulusCondensed matter physicsSynchrotron radiationMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesX-ray diffractionPhosphorsMechanics of MaterialsMolecular vibrationFISICA APLICADACompressibilitysymbolsAnisotropy0210 nano-technologyRaman spectroscopyRaman scattering
researchProduct

Transition path to a dense efficient-packed post-delafossite phase. Crystal structure and evolution of the chemical bonding

2021

We are thankful for the financial support received from the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación under national projects PGC2018-094417-B-I00 (co-financed by EU FEDER funds), MAT2016-75586-C4-1-P/2-P, FIS2017-83295-P, PID2019-106383GB-C41/C42 and RED2018- 102612-T (MALTA Consolider), and from Generalitat Valenciana under project PROMETEO/2018/123. D.S-P, A.O.R, and J.A.S acknowledge financial support of the Spanish MINECO for the RyC-2014-15643, RyC-2016-20301, and RyC-2015-17482 Ramón y Cajal Grants, respectively.

Phase transitionMaterials scienceMechanical EngineeringMetals and Alloys02 engineering and technologyCrystal structureengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBond order0104 chemical sciencesCrystalDelafossiteCrystallographyChemical bondMechanics of MaterialsAb initio quantum chemistry methodsPhase (matter)Materials Chemistryengineering0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Structural, magnetic, dielectric and mechanical properties of (Ba,Sr)MnO3 ceramics

2017

The authors acknowledge the CPU time allocation at Academic Computer Centre CYFRONET AGH in Cracow. This work was supported in part by PL-Grid Infrastructure and the European Regional Development Fund under the Infrastructure and Environment Programme [grant number UDA-POIS.13.01-023/09-00]. The research was partially carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08). L. Vasylechko acknowledges partial support of the Ukrainian Ministry of Education and Sciences under the Projects ?RZE?, ?KMON?, and ICDD Grant-in-Aid pro…

Phase transitionMaterials scienceMultiferroicsEnthalpyAnalytical chemistryAb initioFOS: Physical sciences02 engineering and technologyDielectricActivation energy01 natural sciences7. Clean energyThermal expansionDSCsymbols.namesakeNuclear magnetic resonanceManganites0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Chemistry:NATURAL SCIENCES:Physics [Research Subject Categories]Ceramic010306 general physicsArrhenius equationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSIESTAMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyFTIRvisual_artCeramics and Compositessymbolsvisual_art.visual_art_medium0210 nano-technologyJournal of the European Ceramic Society
researchProduct

High-pressure monoclinic–monoclinic transition in fergusonite-type HoNbO4

2021

Abstract In this paper we perform a high-pressure (HP) study of fergusonite-type HoNbO4. Powder x-ray diffraction experiments and ab initio density-functional theory (DFT) simulations provide evidence of a phase transition at 18.9(1.1) GPa from the monoclinic fergusonite-type structure (space group I2/a) to another monoclinic polymorph described by space group P21/c. The phase transition is reversible and the HP structural behavior is different than the one previously observed in related niobates. The HP phase remains stable up to 29 GPa. The observed transition involves a change in the Nb coordination number from 4 to 6, and it is driven by mechanical instabilities. We have determined the …

Phase transitionMaterials sciencePhononAb initioThermodynamicsCondensed Matter Physicssymbols.namesakeAb initio quantum chemistry methodsPhase (matter)X-ray crystallographysymbolsGeneral Materials ScienceRaman spectroscopyMonoclinic crystal systemJournal of Physics: Condensed Matter
researchProduct