Search results for "ab initio"

showing 10 items of 990 documents

Quantum dynamics of the photostability of pyrazine

2015

We investigate the radiationless decay of photoexcited pyrazine to its ground electronic state using multireference electronic structure and quantum dynamics calculations. We construct a quadratic vibronic coupling Hamiltonian, including the four lowest electronic states and ten vibrational modes, by fitting to more than 5000 ab initio points. We then use this model to simulate the non-adiabatic excited state dynamics of the molecule using the multi-configuration time-dependent Hartree method. On the basis of these calculations, we propose a new mechanism for this decay process involving a conical intersection between the Au(nπ*) state and the ground state. After excitation to the B2u(ππ*) …

PhysicsQuantum dynamicsAb initioGeneral Physics and AstronomyElectronic structureConical intersection7. Clean energy3. Good health[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryVibronic couplingExcited stateMolecular vibration[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsGround stateComputingMilieux_MISCELLANEOUS
researchProduct

The branching ratio of intercombination A1Σ+∼b3Π→a3Σ+/X1Σ+transitions in the RbCs molecule: Measurements and calculations

2020

Abstract We observed the A 1 Σ + ∼ b 3 Π → a 3 Σ + / X 1 Σ + laser-induced fluorescence (LIF) of the RbCs molecule excited from the ground X 1 Σ + state by the Ti:Sapphire laser. The LIF spectra from the common perturbed levels of the singlet-triplet A ∼ b complex was recorded by the Fourier-transform (FT) spectrometer with the instrumental resolution of 0.03 cm − 1 . The relative intensity distribution in the rotationally resolved A ∼ b → a 3 Σ + ( v a ) / X 1 Σ + ( v X ) progressions was measured, and their branching ratio was found to be about of 1 ÷ 5 × 10 − 4 in the bound region of the a 3 Σ + and X 1 Σ + states. The experiment was complemented with the scalar- and full-relativistic ca…

PhysicsRadiation010504 meteorology & atmospheric sciencesBranching fractionAb initioStimulated Raman adiabatic passageLaser01 natural sciencesAtomic and Molecular Physics and OpticsSpectral linelaw.inventionDipolelawExcited stateMoleculeAtomic physicsSpectroscopy0105 earth and related environmental sciencesJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

High-precision ab initio calculations of the spectrum of Lr$^+$

2019

The planned measurement of optical resonances in singly-ionised lawrencium (Z = 103) requires accurate theoretical predictions to narrow the search window. We present high-precision, ab initio calculations of the electronic spectra of Lr$^+$ and its lighter homologue lutetium (Z = 71). We have employed the state-of-the-art relativistic Fock space coupled cluster approach and the AMBiT CI+MBPT code to calculate atomic energy levels, g-factors, and transition amplitudes and branching-ratios. Our calculations are in close agreement with experimentally measured energy levels and transition strengths for the homologue Lu$^+$ , and are well-converged for Lr$^+$ , where we expect a similar level o…

PhysicsSPECTROSCOPYSETSAtomic Physics (physics.atom-ph)ENERGIESFOS: Physical scienceschemistry.chemical_elementConfiguration interaction01 natural sciencesSpectral lineLutetiumPhysics - Atomic Physics010305 fluids & plasmasFock spaceATOMSCoupled clusterchemistryAb initio quantum chemistry methodsIonization0103 physical sciencesPROGRAMddc:530Atomic physics010306 general physicsLawrencium
researchProduct

The use of maximum entropy statistics combined with simulation methods to determine the structure of 4-dimethylamino-3-cyanobiphenyl

1997

Abstract 4-dimethylamino-3-cyanobiphenyl (4-DMA-3-CB) was characterised with respect to non-linear optical (NLO) properties in the gas phase and in the crystal. The crystal structure was solved from a series of electron diffraction patterns using both molecular modelling and ab initio maximum entropy techniques combined with log-likelihood evaluation. The agreement between the two methods is excellent and the structure evaluation permits an analysis of the major components of the hyperpolarisability tensor in the crystal framework.

PhysicsSeries (mathematics)Principle of maximum entropyAb initioStructure (category theory)Physics::OpticsThermodynamicsCrystal structureAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCrystalCrystallographyElectron diffractionTensorInstrumentationUltramicroscopy
researchProduct

First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

2020

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…

PhysicsSpectrometerAb initioShell (structure)Closure (topology)General Physics and AstronomyRenormalization group7. Clean energy01 natural sciencesISOLTRAPIsotopes of cadmium0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutronAtomic physicsNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Electronic, magnetic, and structural properties of the ferrimagnet Mn2CoSn

2011

The magnetic ground state of the Heusler compound Mn${}_{2}$CoSn was predicted to be nearly half-metallic ferrimagnetic with a high spin polarization by ab initio electronic structure calculations. Mn${}_{2}$CoSn was synthesized, and the magnetic behavior of the compound was studied using a superconducting quantum interference device and x-ray magnetic circular dichroism. The experimental values were found to be in fair accordance with the theoretical predictions. The electronic structure and the crystal structure of Mn${}_{2}$CoSn were characterized comprehensively using x-ray powder diffraction, $^{119}\mathrm{Sn}$ M\"ossbauer spectroscopy, nuclear magnetic resonance, and hard x-ray photo…

PhysicsSpin polarizationCondensed matter physicsMagnetic circular dichroismAb initioElectronic structureengineering.materialCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerrimagnetismengineeringCondensed Matter::Strongly Correlated ElectronsGround stateSpectroscopyPhysical Review B
researchProduct

The fate of the resonating valence bond in graphene

2011

We apply a variational wave function capable of describing qualitatively and quantitatively the so called "resonating valence bond" in realistic materials, by improving standard ab initio calculations by means of quantum Monte Carlo methods. In this framework we clearly identify the Kekul\'e and Dewar contributions to the chemical bond of the benzene molecule, and we establish the corresponding resonating valence bond energy of these well known structures ($\simeq 0.01$eV/atom). We apply this method to unveil the nature of the chemical bond in undoped graphene and show that this picture remains only within a small "resonance length" of few atomic units.

PhysicsStrongly Correlated Electrons (cond-mat.str-el)Quantum Monte CarloCondensed Matter - SuperconductivityQuantum monte carloGeneral Physics and AstronomyFOS: Physical sciencesResonance (chemistry)Atomic unitsMolecular physicsSettore FIS/03 - Fisica della MateriaSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsChemical bondAb initio quantum chemistry methodsResonance valence bondAtomPhysics::Atomic and Molecular ClustersCondensed Matter::Strongly Correlated ElectronsValence bond theoryGrapheneAtomic physicsGeneralized valence bond
researchProduct

Laser Pulse Effects in Two-level Systems Driven by Coherent and Fluctuating Radiation Fields

1988

Abstract We reconsider the problem of a two-level system interacting with a radiation field in order to study some new features suggested by the actual experimental conditions. Pulse shape and duration effects are included in the formalism and the counter-rotating terms are retained. The criterion of validity of the rotating wave approximation (RWA) for pulsed fields is investigated; generalizing results well known in RWA, we establish some new formal results, including non-RWA contributions to all orders and for any pulse shape. The analysis is then carried out for fluctuating fields, by developing a method based on the theory of multiplicative stochastic differential equations. For short …

Physicsbusiness.industryDifferential equationMultiplicative functionAb initioRadiationLaserAtomic and Molecular Physics and Opticslaw.inventionStochastic differential equationOpticslawRotating wave approximationStatistical physicsbusinessPulse-width modulationJournal of Modern Optics
researchProduct

Wavelength dependence of multiphoton ionization of xenon

2004

We have studied the multiphoton ionization of xenon atoms by $160\phantom{\rule{0.3em}{0ex}}\mathrm{fs}$ pulses at intensities of $5\ifmmode\times\else\texttimes\fi{}{10}^{12}$ and $1.3\ifmmode\times\else\texttimes\fi{}{10}^{13}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$ and present photoelectron kinetic energy and angular distribution spectra measured with a photoelectron imaging spectrometer. A noncollinear optical parametric amplifier allows us to tune the wavelength of the laser pulse over a range between 500 and $700\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. Resonant and nonresonant processes as well as channel switching effects have been observed in this intensity and wavel…

Physicschemistry.chemical_elementPhotoionizationKinetic energyAtomic and Molecular Physics and OpticsSpectral linesymbols.namesakeXenonchemistryAb initio quantum chemistry methodsIonizationRydberg formulasymbolsAtomic physicsIntensity (heat transfer)Physical Review A
researchProduct

Accurate Nonlinear Optical Properties for Small Molecules

2006

During the last decade it became possible to calculate by quantum chemical ab initio methods not only static but also frequency-dependent properties with high accuracy. Today, the most important tools for such calculations are coupled cluster response methods in combination with systematic hierarchies of correlation consistent basis sets. Coupled cluster response methods combine a computationally efficient treatment of electron correlation with a qualitatively correct pole structure and frequency dispersion of the response functions. Both are improved systematically within a hierarchy of coupled cluster models. The present contribution reviews recent advances in the highly accurate calculat…

Physicssymbols.namesakeCoupled clusterBasis (linear algebra)Electronic correlationFaraday effectsymbolsAb initioExtrapolationElectronic structureStatistical physicsBasis set
researchProduct