Search results for "abelian"
showing 10 items of 208 documents
Sharp estimates for eigenfunctions of a Neumann problem
2009
In this paper we provide some bounds for the eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in a bounded domain Ω of R^n. To this aim we use the so-called symmetrization techniques and the obtained estimates are asymptotically sharp, at least in the bidimensional case, when the isoperimetric constant relative to Ω goes to 0.
Pseudo-abelian integrals: Unfolding generic exponential case
2009
The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), n…
Abelian integrals and limit cycles
2006
Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.
Artin monoids inject in their groups
2001
We prove that the natural homomorphism from an Artin monoid to its associated Artin group is always injective
General Set-Up
2017
On the adjoint group of some radical rings
1997
A ring R is called radical if it coincides with its Jacobson radical, which means that Rforms a group under the operation a ° b = a + b + ab for all a and b in R. This group is called the adjoint group R° of R. The relation between the adjoint group R° and the additive group R+ of a radical rin R is an interesting topic to study. It has been shown in [1] that the finiteness conditions “minimax”, “finite Prufer rank”, “finite abelian subgroup rank” and “finite torsionfree rank” carry over from the adjoint group to the additive group of a radical ring. The converse is true for the minimax condition, while it fails for all the other above finiteness conditions by an example due to Sysak [6] (s…
A characterization of fundamental algebras through S-characters
2020
Abstract Fundamental algebras play an important role in the theory of algebras with polynomial identities in characteristic zero. They are defined in terms of multialternating polynomials non vanishing on them. Here we give a characterization of fundamental algebras in terms of representations of symmetric groups obtaining this way an equivalent definition. As an application we determine when a finitely generated Grassmann algebra is fundamental.
Abelian gradings on upper-triangular matrices
2003
Let G be an arbitrary finite abelian group. We describe all possible G-gradings on an upper-triangular matrix algebra over an algebraically closed field of characteristic zero.
Graded Involutions on Upper-triangular Matrix Algebras
2009
Let UTn be the algebra of n × n upper-triangular matrices over an algebraically closed field of characteristic zero. We describe all G-gradings on UTn by a finite abelian group G commuting with an involution (involution gradings).
Group algebras of torsion groups and Lie nilpotence
2010
Letbe an involution of a group algebra FG induced by an involution of the group G. For char F 0 2, we classify the torsion groups G with no elements of order 2 whose Lie al- gebra of � -skew elements is nilpotent.