6533b7d4fe1ef96bd1263255

RESEARCH PRODUCT

Sharp estimates for eigenfunctions of a Neumann problem

Francesco ChiacchioCristina TrombettiBarbara Brandolini

subject

Neumann eigenvaluesApplied MathematicsMathematical analysisSymmetrizationMathematics::Spectral TheoryNeumann seriessymbols.namesakeVon Neumann algebraSettore MAT/05 - Analisi MatematicaBounded functionNeumann boundary conditionsymbolsSymmetrizationAbelian von Neumann algebraIsoperimetric inequalityAffiliated operatorAnalysisMathematics

description

In this paper we provide some bounds for the eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in a bounded domain Ω of R^n. To this aim we use the so-called symmetrization techniques and the obtained estimates are asymptotically sharp, at least in the bidimensional case, when the isoperimetric constant relative to Ω goes to 0.

10.1080/03605300903089859http://hdl.handle.net/10447/493997