0000000000049970

AUTHOR

Cristina Trombetti

0000-0001-8466-9905

showing 25 related works from this author

A sharp lower bound for some neumann eigenvalues of the hermite operator

2013

This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain $\Omega$, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue $\mu_1^{odd}(\Omega)$ with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem. As an immediate consequence, in the class of domains for which $\mu_1(\Omega)=\mu_1^{odd}(\Omega)$, we get an explicit lower bound for the difference between $\mu(\Omega)$ and the first Neumann eigenvalue of any strip.

Hermite operatorMathematics - Analysis of PDEsNeumann eigenvaleSettore MAT/05 - Analisi MatematicaApplied MathematicsFOS: MathematicsMathematics::Spectral TheoryAnalysis35J7035P15Analysis of PDEs (math.AP)symmetry
researchProduct

Serrin-Type Overdetermined Problems: an Alternative Proof

2008

We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.

Hessian equationMechanical EngineeringMathematical analysisMathematics::Analysis of PDEsHessian equationType (model theory)isoperimetric inequalityMathematical proofOverdetermined systemNonlinear systemMathematics (miscellaneous)Maximum principleSettore MAT/05 - Analisi Matematicasymmetry of solutionsOverdetermined problemApplied mathematicsIsoperimetric inequalityPoisson's equationAnalysisMathematicsArchive for Rational Mechanics and Analysis
researchProduct

Sharp estimates for eigenfunctions of a Neumann problem

2009

In this paper we provide some bounds for the eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in a bounded domain Ω of R^n. To this aim we use the so-called symmetrization techniques and the obtained estimates are asymptotically sharp, at least in the bidimensional case, when the isoperimetric constant relative to Ω goes to 0.

Neumann eigenvaluesApplied MathematicsMathematical analysisSymmetrizationMathematics::Spectral TheoryNeumann seriessymbols.namesakeVon Neumann algebraSettore MAT/05 - Analisi MatematicaBounded functionNeumann boundary conditionsymbolsSymmetrizationAbelian von Neumann algebraIsoperimetric inequalityAffiliated operatorAnalysisMathematics
researchProduct

Shape optimization for monge-ampére equations via domain derivative

2011

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.

Dirichlet problemMathematical optimizationPure mathematicsFictitious domain methodDomain derivativeApplied MathematicsOpen setRegular polygonMonge–Ampère equationMonge-Ampère equationSettore MAT/05 - Analisi MatematicaGeneralizations of the derivativeNorm (mathematics)Discrete Mathematics and CombinatoricsAffine isoperimetric inequalitiesConvex functionAnalysisMathematics
researchProduct

A sharp estimate of the extinction time for the mean curvature flow

2007

We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.

Dirichlet problemPointwiseMean curvature flowMean curvatureApplied MathematicsMathematical analysisCurvatureisoperimetric inequalityextinction timeNonlinear systemElliptic curveSettore MAT/05 - Analisi Matematicamean curvature motionIsoperimetric inequalityMathematics
researchProduct

Symmetrization for singular semilinear elliptic equations

2012

In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Dirichlet problemSharp a priori estimatesSemilinear elliptic equationsMathematics::Operator AlgebrasApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsComparison resultsSymmetrizationGeodetic datumElliptic curveSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologySymmetrizationMathematics
researchProduct

Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type

2014

Abstract The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.

Curvature flowApplied MathematicsGeneral MathematicsMathematical analysisFully nonlinear equationsAuxiliary functionEllipsoidSobolev inequalityOverdetermined systemMaximum principlesMaximum principleSettore MAT/05 - Analisi MatematicaAffine curvatureOverdetermined problemsEntropy (information theory)Boundary value problemMathematics
researchProduct

Viscosity solutions of the Monge-Ampère equation with the right hand side in Lp

2007

We compare various notions of solutions of Monge-Ampère equations with discontinuous functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness of Lp-viscosity solutions.

Monge-Ampère equationsViscosityClassical mechanicsViscosity solutions; weak solutions; Monge-Ampère equationsSettore MAT/05 - Analisi MatematicaGeneral MathematicsViscosity solutionsweak solutionsMathematical analysisMonge–Ampère equationMathematics
researchProduct

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

2013

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Pure mathematicsp-Laplace operatorGeneral MathematicsMathematics::Spectral TheoryLipschitz continuityUpper and lower boundsDomain (mathematical analysis)ConvexityCombinatoricslower boundsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsNeumann eigenvalueIsoperimetric inequalityLaplace operatorEigenvalues and eigenvectorsMathematicsAnalysis of PDEs (math.AP)
researchProduct

On the solutions to 1-Laplacian equation with L1 data

2009

AbstractIn the present paper we study the behaviour, as p goes to 1, of the renormalized solutions to the problems(0.1){−div(|∇up|p−2∇up)=finΩ,up=0on∂Ω, where p>1, Ω is a bounded open set of RN (N⩾2) with Lipschitz boundary and f belongs to L1(Ω). We prove that these renormalized solutions pointwise converge, up to “subsequences,” to a function u. With a suitable definition of solution we also prove that u is a solution to a “limit problem.” Moreover we analyze the situation occurring when more regular data f are considered.

Discrete mathematicsPointwise1-Laplace operatorRenormalized solutionsOpen setBoundary (topology)Function (mathematics)Nonlinear elliptic equationsLipschitz continuityRenormalized solutionBounded functionSummable dataLimit (mathematics)L1-data1Laplce operatorLaplace operatorAnalysisMathematicsJournal of Functional Analysis
researchProduct

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

2010

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics
researchProduct

The equality case in a Poincaré–Wirtinger type inequality

2016

It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.

Hermite operatorsymbols.namesakePure mathematicsNeumann eigenvaluesSettore MAT/05 - Analisi MatematicaHermite operator Neumann eigenvalues thin stripsGeneral MathematicsPoincaré conjecturesymbolsType inequalityThin stripsMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

A symmetrization result for Monge–Ampère type equations

2007

In this paper we prove some comparison results for Monge–Ampere type equations in dimension two. We also consider the case of eigenfunctions and we derive a kind of “reverse” inequalities. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Mathematics::Complex VariablesGeneral MathematicsMathematical analysisComparison resultsMonge-Ampère equationEigenfunctionType (model theory)Monge-Ampère equationsDimension (vector space)Settore MAT/05 - Analisi Matematicaeigenvalue problemrearrangementsSymmetrizationAmpereEigenvalue problemsMathematicsMathematische Nachrichten
researchProduct

An optimal Poincaré-Wirtinger inequality in Gauss space

2013

International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.

Hermite operatorHermite polynomialsGeneral Mathematics010102 general mathematicsGaussMathematics::Spectral TheorySpace (mathematics)Gaussian measure01 natural sciencesOmega35B45; 35P15; 35J70CombinatoricsSobolev spaceSettore MAT/05 - Analisi Matematica0103 physical sciencesDomain (ring theory)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Neumann eigenvaluesharp bounds010307 mathematical physics0101 mathematicsSign (mathematics)MathematicsMathematical Research Letters
researchProduct

Symmetry breaking in a constrained cheeger type isoperimetric inequality

2015

We study the optimal constant in a Sobolev inequality for BV functions with zero mean value and vanishing outside a bounded open set. We are interested in finding the best possible embedding constant in terms of the measure of the domain alone. We set up an optimal shape problem and we completely characterize the behavior of optimal domains.

Control and OptimizationOptimal shapeZero (complex analysis)Symmetry and asymmetryMeasure (mathematics)Sobolev inequalityCheeger inequalityCombinatoricsComputational MathematicsMathematics - Analysis of PDEsOptimization and Control (math.OC)Control and Systems EngineeringSettore MAT/05 - Analisi MatematicaFOS: MathematicsExponentSymmetry breakingIsoperimetric inequalitySymmetry (geometry)Constant (mathematics)Mathematics - Optimization and ControlAnalysis of PDEs (math.AP)Mathematics
researchProduct

On the stability of the Serrin problem

2008

We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.

Applied MathematicsMathematical analysisSymmetry in biologyDisjoint setsUnitary stateStability (probability)Domain (mathematical analysis)Overdetermined systemSettore MAT/05 - Analisi MatematicaOverdetermined problemOverdetermined problemsStabilityAnalysisMathematics
researchProduct

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

Local behaviour of singular solutions for nonlinear elliptic equations in divergence form

2012

We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…

Applied MathematicsMathematical analysisZero (complex analysis)Function (mathematics)DivergenceCombinatoricsNonlinear systemSettore MAT/05 - Analisi MatematicaFundamental solutionnonlinear equationsNabla symbolSingular solutionAnalysisMathematics
researchProduct

Anisotropic -Laplacian equations when goes to

2010

Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…

Dirichlet problemGroup (mathematics)Applied MathematicsMathematical analysisp-LaplacianStandard probability spaceAlmost everywhereFunction (mathematics)Limit (mathematics)Laplace operatorAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term

2001

Abstract Our aim in this article is to study the following nonlinear elliptic Dirichlet problem: − div [a(x,u)·∇u]+b(x,u,∇u)=f, in Ω; u=0, on ∂Ω; where Ω is a bounded open subset of RN, with N>2, f∈L m (Ω) . Under wide conditions on functions a and b, we prove that there exists a type of solution for this problem; this is a bounded weak solution for m>N/2, and an unbounded entropy solution for N/2>m⩾2N/(N+2). Moreover, we show when this entropy solution is a weak one and when can be taken as test function in the weak formulation. We also study the summability of the solutions.

Bounded and unbounded solutionsQuasi-linear elliptic problemsDirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionMathematical analysisQuadratic functionWeak formulationNonlinear systemElliptic curveQuadratic equationBounded functionQuadratic gradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct

Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift

2015

Abstract This paper deals with the eigenvalue problem for the operator L = − Δ − x ⋅ ∇ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue λ k of L under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any c > 0 and k ∈ N the following minimization problem min ⁡ { λ k ( Ω ) : Ω quasi-open set , ∫ Ω e | x | 2 / 2 d x ≤ c } has a solution.

Pure mathematicsMinimization of eigenvalueStructure (category theory)01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Weighted Sobolev spaces0101 mathematicsComputingMilieux_MISCELLANEOUSEigenvalues and eigenvectorsMathematicsApplied MathematicsOperator (physics)010102 general mathematicsMinimization problemMathematics::Spectral Theory010101 applied mathematicsDirichlet laplacianDirichlet boundary conditionDirichlet–Laplacian with a driftsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Some remarks on nonlinear elliptic problems involving Hardy potentials

2007

In this note we prove an Hardy type inequality with a remainder term, where the potential depends only on a group of variables. Such a result allows us to show the existence of entropy solutions to a class of elliptic P.D.E.'s.

hardy type inequalitySettore MAT/05 - Analisi Matematicanonlinear eigenvalue problemHardy type inequalitieentropy solutions
researchProduct

Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem

2011

Abstract We determine the shape which minimizes, among domains with given measure, the first eigenvalue of a nonlocal operator consisting of a perturbation of the standard Dirichlet Laplacian by an integral of the unknown function. We show that this problem displays a saturation behaviour in that the corresponding value of the minimal eigenvalue increases with the weight affecting the average up to a (finite) critical value of this weight, and then remains constant. This critical point corresponds to a transition between optimal shapes, from one ball as in the Faber–Krahn inequality to two equal balls.

SecondaryMathematics(all)General MathematicsEigenvalue010102 general mathematicsMathematical analysisPerturbation (astronomy)SaturationMathematics::Spectral TheoryCritical value01 natural sciencesCritical point (mathematics)010101 applied mathematicsDirichlet eigenvalueShape optimizationSettore MAT/05 - Analisi MatematicaDirichlet laplacianBall (bearing)Rayleigh–Faber–Krahn inequality0101 mathematicsNonlocalPrimaryEigenvalues and eigenvectorsMathematicsAdvances in Mathematics
researchProduct

Comparison results for Hessian equations via symmetrization

2007

where the λ’s are the eigenvalues of the Hessian matrix D2u of u and Sk is the kth elementary symmetric function. For example, for k = 1, S1(Du) = 1u, while, for k = n, Sn(D 2u) = detD2u. Equations involving these operators, and some more general equations of the form F(λ1, . . . , λn) = f in , (1.2) have been widely studied by many authors, who restrict their considerations to convenient cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25] we define the cone 0k of ellipticity for (1.1) to be the connected component containing the positive cone 0 = {λ ∈ R : λi > 0 ∀i = 1, . . . , n} of the set where Sk is positive. Thus 0k is an open, convex, symmetric…

Hessian matrixHessian equationsymmetrizationHessian operatorApplied MathematicsGeneral Mathematicscomparison resultHessian equationCombinatoricssymbols.namesakeOperator (computer programming)Cone (topology)Settore MAT/05 - Analisi MatematicaVertex (curve)symbolsSymmetrizationElementary symmetric polynomialMoser type inequalitiesAlgorithmEigenvalues and eigenvectorsMathematics
researchProduct