6533b822fe1ef96bd127ce69

RESEARCH PRODUCT

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

Carlo NitschCristina TrombettiBarbara Brandolini

subject

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics

description

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

10.1007/s00013-010-0102-8http://hdl.handle.net/11588/361118