0000000000077440
AUTHOR
Carlo Nitsch
Serrin-Type Overdetermined Problems: an Alternative Proof
We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.
Shape optimization for monge-ampére equations via domain derivative
In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.
A sharp estimate of the extinction time for the mean curvature flow
We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.
Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type
Abstract The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.
An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit
We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.
Some remarks on the extinction time for the mean curvature flow
We write some consideratons on the extinction time for the mean curvature flow
Symmetry breaking in a constrained cheeger type isoperimetric inequality
We study the optimal constant in a Sobolev inequality for BV functions with zero mean value and vanishing outside a bounded open set. We are interested in finding the best possible embedding constant in terms of the measure of the domain alone. We set up an optimal shape problem and we completely characterize the behavior of optimal domains.
On the stability of the Serrin problem
We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.
Stability of radial symmetry for a Monge-Ampère overdetermined problem
Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
New isoperimetric estimates for solutions to Monge - Ampère equations
Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.
Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem
Abstract We determine the shape which minimizes, among domains with given measure, the first eigenvalue of a nonlocal operator consisting of a perturbation of the standard Dirichlet Laplacian by an integral of the unknown function. We show that this problem displays a saturation behaviour in that the corresponding value of the minimal eigenvalue increases with the weight affecting the average up to a (finite) critical value of this weight, and then remains constant. This critical point corresponds to a transition between optimal shapes, from one ball as in the Faber–Krahn inequality to two equal balls.