0000000000077440

AUTHOR

Carlo Nitsch

showing 11 related works from this author

Serrin-Type Overdetermined Problems: an Alternative Proof

2008

We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.

Hessian equationMechanical EngineeringMathematical analysisMathematics::Analysis of PDEsHessian equationType (model theory)isoperimetric inequalityMathematical proofOverdetermined systemNonlinear systemMathematics (miscellaneous)Maximum principleSettore MAT/05 - Analisi Matematicasymmetry of solutionsOverdetermined problemApplied mathematicsIsoperimetric inequalityPoisson's equationAnalysisMathematicsArchive for Rational Mechanics and Analysis
researchProduct

Shape optimization for monge-ampére equations via domain derivative

2011

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.

Dirichlet problemMathematical optimizationPure mathematicsFictitious domain methodDomain derivativeApplied MathematicsOpen setRegular polygonMonge–Ampère equationMonge-Ampère equationSettore MAT/05 - Analisi MatematicaGeneralizations of the derivativeNorm (mathematics)Discrete Mathematics and CombinatoricsAffine isoperimetric inequalitiesConvex functionAnalysisMathematics
researchProduct

A sharp estimate of the extinction time for the mean curvature flow

2007

We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.

Dirichlet problemPointwiseMean curvature flowMean curvatureApplied MathematicsMathematical analysisCurvatureisoperimetric inequalityextinction timeNonlinear systemElliptic curveSettore MAT/05 - Analisi Matematicamean curvature motionIsoperimetric inequalityMathematics
researchProduct

Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type

2014

Abstract The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.

Curvature flowApplied MathematicsGeneral MathematicsMathematical analysisFully nonlinear equationsAuxiliary functionEllipsoidSobolev inequalityOverdetermined systemMaximum principlesMaximum principleSettore MAT/05 - Analisi MatematicaAffine curvatureOverdetermined problemsEntropy (information theory)Boundary value problemMathematics
researchProduct

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

2010

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics
researchProduct

Some remarks on the extinction time for the mean curvature flow

2005

We write some consideratons on the extinction time for the mean curvature flow

Settore MAT/05 - Analisi MatematicaMean curvature flowrearrangementextinction time
researchProduct

Symmetry breaking in a constrained cheeger type isoperimetric inequality

2015

We study the optimal constant in a Sobolev inequality for BV functions with zero mean value and vanishing outside a bounded open set. We are interested in finding the best possible embedding constant in terms of the measure of the domain alone. We set up an optimal shape problem and we completely characterize the behavior of optimal domains.

Control and OptimizationOptimal shapeZero (complex analysis)Symmetry and asymmetryMeasure (mathematics)Sobolev inequalityCheeger inequalityCombinatoricsComputational MathematicsMathematics - Analysis of PDEsOptimization and Control (math.OC)Control and Systems EngineeringSettore MAT/05 - Analisi MatematicaFOS: MathematicsExponentSymmetry breakingIsoperimetric inequalitySymmetry (geometry)Constant (mathematics)Mathematics - Optimization and ControlAnalysis of PDEs (math.AP)Mathematics
researchProduct

On the stability of the Serrin problem

2008

We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.

Applied MathematicsMathematical analysisSymmetry in biologyDisjoint setsUnitary stateStability (probability)Domain (mathematical analysis)Overdetermined systemSettore MAT/05 - Analisi MatematicaOverdetermined problemOverdetermined problemsStabilityAnalysisMathematics
researchProduct

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct

Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem

2011

Abstract We determine the shape which minimizes, among domains with given measure, the first eigenvalue of a nonlocal operator consisting of a perturbation of the standard Dirichlet Laplacian by an integral of the unknown function. We show that this problem displays a saturation behaviour in that the corresponding value of the minimal eigenvalue increases with the weight affecting the average up to a (finite) critical value of this weight, and then remains constant. This critical point corresponds to a transition between optimal shapes, from one ball as in the Faber–Krahn inequality to two equal balls.

SecondaryMathematics(all)General MathematicsEigenvalue010102 general mathematicsMathematical analysisPerturbation (astronomy)SaturationMathematics::Spectral TheoryCritical value01 natural sciencesCritical point (mathematics)010101 applied mathematicsDirichlet eigenvalueShape optimizationSettore MAT/05 - Analisi MatematicaDirichlet laplacianBall (bearing)Rayleigh–Faber–Krahn inequality0101 mathematicsNonlocalPrimaryEigenvalues and eigenvectorsMathematicsAdvances in Mathematics
researchProduct