0000000000241196

AUTHOR

Francesco Chiacchio

showing 12 related works from this author

Sharp estimates for eigenfunctions of a Neumann problem

2009

In this paper we provide some bounds for the eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in a bounded domain Ω of R^n. To this aim we use the so-called symmetrization techniques and the obtained estimates are asymptotically sharp, at least in the bidimensional case, when the isoperimetric constant relative to Ω goes to 0.

Neumann eigenvaluesApplied MathematicsMathematical analysisSymmetrizationMathematics::Spectral TheoryNeumann seriessymbols.namesakeVon Neumann algebraSettore MAT/05 - Analisi MatematicaBounded functionNeumann boundary conditionsymbolsSymmetrizationAbelian von Neumann algebraIsoperimetric inequalityAffiliated operatorAnalysisMathematics
researchProduct

Symmetrization for singular semilinear elliptic equations

2012

In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Dirichlet problemSharp a priori estimatesSemilinear elliptic equationsMathematics::Operator AlgebrasApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsComparison resultsSymmetrizationGeodetic datumElliptic curveSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologySymmetrizationMathematics
researchProduct

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

2013

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Pure mathematicsp-Laplace operatorGeneral MathematicsMathematics::Spectral TheoryLipschitz continuityUpper and lower boundsDomain (mathematical analysis)ConvexityCombinatoricslower boundsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsNeumann eigenvalueIsoperimetric inequalityLaplace operatorEigenvalues and eigenvectorsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Some applications of the Chambers isoperimetric inequality

2022

In this paper, using the Chambers isoperimetric inequality, we introduce the notion of weighted rearrangement of a function associated to the measure $f dx$, where $f(x)=e^{g(|x|)}$ for $x \in \mathbb{R}^n}$, with $g$ smooth, convex and even. Then we give some of its applications to variational inequalities and PDEs via weighted symmetrization.

Weighted isoperimetric inequalities rearrangements symmetrization sharp estimates eigenvaluesSettore MAT/05 - Analisi Matematica
researchProduct

The equality case in a Poincaré–Wirtinger type inequality

2016

It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.

Hermite operatorsymbols.namesakePure mathematicsNeumann eigenvaluesSettore MAT/05 - Analisi MatematicaHermite operator Neumann eigenvalues thin stripsGeneral MathematicsPoincaré conjecturesymbolsType inequalityThin stripsMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

Estimates for Sums of Eigenvalues of the Free Plate via the Fourier Transform

2017

Using the Fourier transform, we obtain upper bounds for sums of eigenvalues of the free plate.

Tension (physics)Applied MathematicsSums of eigenvaluesMathematical analysisFree plate35P15 35J40 74K20General MedicineMathematics::Spectral TheoryDomain (mathematical analysis)Ambient spaceMathematics - Spectral TheoryPhysics::Fluid Dynamicssymbols.namesakeFourier transformVolume (thermodynamics)Dimension (vector space)Bilaplace operatorSettore MAT/05 - Analisi MatematicasymbolsFOS: MathematicsSpectral Theory (math.SP)AnalysisEigenvalues and eigenvectorsMathematics
researchProduct

Sharp Poincaré inequalities in a class of non-convex sets

2018

Let $gamma$ be a smooth, non-closed, simple curve whose image is symmetric with respect to the $y$-axis, and let $D$ be a planar domain consisting of the points on one side of $gamma$, within a suitable distance $delta$ of $gamma$. Denote by $mu_1^{odd}(D)$ the smallest nontrivial Neumann eigenvalue having a corresponding eigenfunction that is odd with respect to the $y$-axis. If $gamma$ satisfies some simple geometric conditions, then $mu_1^{odd}(D)$ can be sharply estimated from below in terms of the length of $gamma$ , its curvature, and $delta$. Moreover, we give explicit conditions on $delta$ that ensure $mu_1^{odd}(D)=mu_1(D)$. Finally, we can extend our bound on $mu_1^{odd}(D)$ to a …

Pure mathematicsClass (set theory)non-convex domainsInequalitymedia_common.quotation_subjectRegular polygonStatistical and Nonlinear Physicssymbols.namesakeSettore MAT/05 - Analisi MatematicaPoincaré conjecturesymbolsNeumann eigenvalueGeometry and Topologylower boundMathematical Physicsmedia_commonMathematics
researchProduct

An optimal Poincaré-Wirtinger inequality in Gauss space

2013

International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.

Hermite operatorHermite polynomialsGeneral Mathematics010102 general mathematicsGaussMathematics::Spectral TheorySpace (mathematics)Gaussian measure01 natural sciencesOmega35B45; 35P15; 35J70CombinatoricsSobolev spaceSettore MAT/05 - Analisi Matematica0103 physical sciencesDomain (ring theory)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Neumann eigenvaluesharp bounds010307 mathematical physics0101 mathematicsSign (mathematics)MathematicsMathematical Research Letters
researchProduct

A remark on the radial minimizer of the Ginzburg-Landau functional

2014

Let Omega subset of R-2 be a bounded domain with the same area as the unit disk B-1 and letE-epsilon(u, Omega) = 1/2 integral(Omega) vertical bar del u vertical bar(2) dx + 1/4 epsilon(2) integral(Omega) (vertical bar u vertical bar(2) - 1)(2) dxbe the Ginzburg-Landau functional. Denote by (u) over tilde (epsilon) the radial solution to the Euler equation associated to the problem min {E-epsilon (u, B-1) : u vertical bar(partial derivative B1) = x} and byK = {v = (v(1), v(2)) is an element of H-1 (Omega; R-2) : integral(Omega) v(1) dx = integral(Omega) v(2) dx = 0,integral(Omega) vertical bar v vertical bar(2) dx >= integral(B1) vertical bar(u) over tilde vertical bar(2) dx}.In this note…

Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicalcsh:MathematicsGinzburg-Landau functionalFOS: MathematicsGinzburg-Landau functional Szego-Weinberger inequalitylcsh:QA1-939Szego-Weinberger inequalityAnalysis of PDEs (math.AP)
researchProduct

Local behaviour of singular solutions for nonlinear elliptic equations in divergence form

2012

We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…

Applied MathematicsMathematical analysisZero (complex analysis)Function (mathematics)DivergenceCombinatoricsNonlinear systemSettore MAT/05 - Analisi MatematicaFundamental solutionnonlinear equationsNabla symbolSingular solutionAnalysisMathematics
researchProduct

Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift

2015

Abstract This paper deals with the eigenvalue problem for the operator L = − Δ − x ⋅ ∇ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue λ k of L under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any c > 0 and k ∈ N the following minimization problem min ⁡ { λ k ( Ω ) : Ω quasi-open set , ∫ Ω e | x | 2 / 2 d x ≤ c } has a solution.

Pure mathematicsMinimization of eigenvalueStructure (category theory)01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Weighted Sobolev spaces0101 mathematicsComputingMilieux_MISCELLANEOUSEigenvalues and eigenvectorsMathematicsApplied MathematicsOperator (physics)010102 general mathematicsMinimization problemMathematics::Spectral Theory010101 applied mathematicsDirichlet laplacianDirichlet boundary conditionDirichlet–Laplacian with a driftsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere

2018

Here, we prove an isoperimetric inequality for the harmonic mean of the first [Formula: see text] non-trivial Neumann eigenvalues of the Laplace–Beltrami operator for domains contained in a hemisphere of [Formula: see text].

isoperimetric inequalitiesPure mathematicsNeumann eigenvaluesApplied MathematicsGeneral MathematicsHarmonic meanOperator (physics)Mathematics::Spectral TheoryMathematics - Analysis of PDEsLaplace–Beltrami operatorLaplace-Beltrami operatorSettore MAT/05 - Analisi MatematicaFOS: MathematicssphereIsoperimetric inequalityEigenvalues and eigenvectorsAnalysis of PDEs (math.AP)Mathematics
researchProduct