6533b835fe1ef96bd129f687

RESEARCH PRODUCT

A remark on the radial minimizer of the Ginzburg-Landau functional

Barbara BrandoliniFrancesco Chiacchio

subject

Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicalcsh:MathematicsGinzburg-Landau functionalFOS: MathematicsGinzburg-Landau functional Szego-Weinberger inequalitylcsh:QA1-939Szego-Weinberger inequalityAnalysis of PDEs (math.AP)

description

Let Omega subset of R-2 be a bounded domain with the same area as the unit disk B-1 and letE-epsilon(u, Omega) = 1/2 integral(Omega) vertical bar del u vertical bar(2) dx + 1/4 epsilon(2) integral(Omega) (vertical bar u vertical bar(2) - 1)(2) dxbe the Ginzburg-Landau functional. Denote by (u) over tilde (epsilon) the radial solution to the Euler equation associated to the problem min {E-epsilon (u, B-1) : u vertical bar(partial derivative B1) = x} and byK = {v = (v(1), v(2)) is an element of H-1 (Omega; R-2) : integral(Omega) v(1) dx = integral(Omega) v(2) dx = 0,integral(Omega) vertical bar v vertical bar(2) dx >= integral(B1) vertical bar(u) over tilde vertical bar(2) dx}.In this note we prove thatmin(v is an element of K) E-epsilon (v, Omega) <= E-epsilon ((u) over tilde, B-1).

https://dx.doi.org/10.48550/arxiv.1305.4028