Search results for "abelian"

showing 10 items of 208 documents

Abelian Powers and Repetitions in Sturmian Words

2016

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79-95, 2011) proved that at every position of a Sturmian word starts an abelian power of exponent $k$ for every $k > 0$. We improve on this result by studying the maximum exponents of abelian powers and abelian repetitions (an abelian repetition is an analogue of a fractional power) in Sturmian words. We give a formula for computing the maximum exponent of an abelian power of abelian period $m$ starting at a given position in any Sturmian word of rotation angle $\alpha$. vAs an analogue of the critical exponent, we introduce the abelian critical exponent $A(s_\alpha)$ of a Sturmian word $s_\alpha$ of angle $\alpha$ as the quantity $A(s_\a…

FOS: Computer and information sciencesFibonacci numberGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Computer Science - Formal Languages and Automata Theory0102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsFOS: MathematicsMathematics - Combinatorics[INFO]Computer Science [cs]Number Theory (math.NT)0101 mathematicsAbelian groupContinued fractionFibonacci wordComputingMilieux_MISCELLANEOUSQuotientMathematicsMathematics - Number Theoryta111010102 general mathematicsComputer Science (all)Sturmian wordSturmian wordAbelian period; Abelian power; Critical exponent; Lagrange constant; Sturmian word; Theoretical Computer Science; Computer Science (all)Abelian periodLagrange constantCritical exponentAbelian power010201 computation theory & mathematicsBounded functionExponentCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Online Computation of Abelian Runs

2015

Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. We give an algorithm that finds all the abelian runs of period $\mathcal{P}$ in a word of length $n$ in time $O(n\times |\mathcal{P}|)$ and space $O(\sigma+|\mathcal{P}|)$.

FOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)Abelian run[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]Computer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology[INFO] Computer Science [cs]01 natural sciencesOnline computationTheoretical Computer ScienceCombinatoricsComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)[INFO]Computer Science [cs]Abelian groupComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematicsComputer Science (all)020206 networking & telecommunicationsAbelian periodText algorithm16. Peace & justiceSubstringCombinatorics on words010201 computation theory & mathematicsWord (group theory)Computer Science::Formal Languages and Automata Theory
researchProduct

Fast computation of abelian runs

2016

Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. Our main result is an online algorithm that, given a word $w$ of length $n$ over an alphabet of cardinality $\sigma$ and a Parikh vector $\mathcal{P}$, returns all the abelian runs of period $\mathcal{P}$ in $w$ in time $O(n)$ and space $O(\sigma+p)$, where $p$ is the norm of $\mathcal{P}$, i.e., the sum of its components. We also present an online algorithm that computes all the abelian runs with periods of norm $p$ in $w$ in time $O(np)$, for any given norm $p$. Finally, we give an $O(n^2)$-time offline randomi…

FOS: Computer and information sciencesGeneral Computer ScienceComputationAbelian run[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Elementary abelian group0102 computer and information sciences02 engineering and technology01 natural sciencesRank of an abelian groupTheoretical Computer ScienceCombinatoricsComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)[INFO]Computer Science [cs]Online algorithmAbelian groupComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematicsComputer Science (all)Abelian periodText algorithm16. Peace & justiceSubstringRandomized algorithmCombinatorics on words010201 computation theory & mathematics020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory
researchProduct

Abelian-Square-Rich Words

2017

An abelian square is the concatenation of two words that are anagrams of one another. A word of length $n$ can contain at most $\Theta(n^2)$ distinct factors, and there exist words of length $n$ containing $\Theta(n^2)$ distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length $n$ grows quadratically with $n$. More precisely, we say that an infinite word $w$ is {\it abelian-square-rich} if, for every $n$, every factor of $w$ of length $n$ contains, on average, a number of distinct abelian-square factors that is quadratic in $n$; and {\it uniformly abelian-sq…

FOS: Computer and information sciencesGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Abelian squareComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology68R1501 natural sciencesSquare (algebra)Theoretical Computer ScienceCombinatorics0202 electrical engineering electronic engineering information engineeringFOS: MathematicsMathematics - CombinatoricsAbelian groupQuotientMathematicsDiscrete mathematicsComputer Science (all)Sturmian wordSturmian wordFunction (mathematics)Thue–Morse word010201 computation theory & mathematicsBounded functionThue-Morse wordExponentAbelian square; Sturmian word; Thue-Morse word; Theoretical Computer Science; Computer Science (all)020201 artificial intelligence & image processingCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

On minimal non-PC-groups

2009

On dit qu'un groupe G est un PC-groupe, si pour tout x ∈ G, G/C G (x G ) est une extension d'un groupe polycyclique par un groupe fini. Un non-PC-groupe minimal est un groupe qui n'est pas un PC-groupe mais dont tous les sous-groupes propres sont des PC-groupes. Notre principal resultat est qu'un non-PC-groupe minimal ayant un groupe quotient fini non-trivial est une extension cyclique finie d'un groupe abelien divisible de rang fini.

Finite groupAlgebra and Number Theory$PC$-groupApplied MathematicsCyclic groupCombinatoricsSettore MAT/02 - Algebraminimal non-$PC$ groupsubgroups of finite indexpolycyclic-by-finite groupCalculusRank (graph theory)Geometry and TopologySettore MAT/03 - GeometriaAbelian groupAnalysisMathematics
researchProduct

A characterisation of nilpotent blocks

2015

Let $B$ be a $p$-block of a finite group, and set $m=$ $\sum \chi(1)^2$, the sum taken over all height zero characters of $B$. Motivated by a result of M. Isaacs characterising $p$-nilpotent finite groups in terms of character degrees, we show that $B$ is nilpotent if and only if the exact power of $p$ dividing $m$ is equal to the $p$-part of $|G:P|^2|P:R|$, where $P$ is a defect group of $B$ and where $R$ is the focal subgroup of $P$ with respect to a fusion system $\CF$ of $B$ on $P$. The proof involves the hyperfocal subalgebra $D$ of a source algebra of $B$. We conjecture that all ordinary irreducible characters of $D$ have degree prime to $p$ if and only if the $\CF$-hyperfocal subgrou…

Finite groupApplied MathematicsGeneral MathematicsSubalgebraZero (complex analysis)Group Theory (math.GR)Prime (order theory)CombinatoricsNilpotentCharacter (mathematics)FOS: MathematicsAbelian groupNilpotent groupRepresentation Theory (math.RT)QAMathematics - Group TheoryMathematics - Representation TheoryMathematics
researchProduct

Weights and Pure Nori Motives

2017

In this chapter, we explain how Nori motives relate to other categories of motives. By the work of Harrer, the realisation functor from geometric motives to absolute Hodge motives factors via Nori motives. We then use this in order to establish the existence of a weight filtration on Nori motives with rational coefficients. The category of pure Nori motives turns out to be equivalent to Andre’s category of motives via motivated cycles.

FunctorRealisationAbelian categoryCategory theoryMathematical economicsMathematics
researchProduct

Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields

2020

We investigate properties of the Albanese map and the fundamental group of a complex projective variety with many rational points over some function field, and prove that every linear quotient of the fundamental group of such a variety is virtually abelian, as well as that its Albanese map is surjective, has connected fibres, and has no multiple fibres in codimension one.

Fundamental groupPure mathematicsGeneral Mathematics01 natural sciencesSurjective functionMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsNumber Theory (math.NT)0101 mathematicsAbelian groupAlgebraic Geometry (math.AG)Projective varietyQuotientFunction fieldMathematicsMathematics - Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Codimension[MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsVariety (universal algebra)International Mathematics Research Notices
researchProduct

Polyomino coloring and complex numbers

2008

AbstractUsually polyominoes are represented as subsets of the lattice Z2. In this paper we study a representation of polyominoes by Gaussian integers. Polyomino {(x1,y1),(x2,y2),…,(xs,ys)}⊂Z2 is represented by the set {(x1+iy1),(x2+iy2),…,(xs+iys)}⊂Z[i]. Then we consider functions of type f:P→G from the set P of all polyominoes to an abelian group G, given by f(x,y)≡(x+iy)m(modv), where v is prime in Z[i],1≤m<N(v) (N(v) is the norm of v). Using the arithmetic of the ring Z[i] we find necessary and sufficient conditions for such a function to be a coloring map.

Gaussian integersDiscrete mathematicsGeneral Computer SciencePolyominoGaussian integerPolyomino tilingLattice (group)Tileability criteriaType (model theory)Prime (order theory)Theoretical Computer ScienceCombinatoricssymbols.namesakeIntegersymbolsColoringFunction compositionAbelian groupComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Classifying G-graded algebras of exponent two

2019

Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …

General Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)0102 computer and information sciencesGraded algebras Exponent GrowthCharacterization (mathematics)01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraInteger010201 computation theory & mathematicsBounded functionExponentPolynomial identity exponent codimension graded algebra0101 mathematicsVariety (universal algebra)Abelian groupMathematics
researchProduct