Search results for "absorption"

showing 10 items of 2701 documents

Low-temperature optical spectroscopy of cobalt in Cu,Co superoxide dismutase: a structural dynamics study of the solvent-unaccessible metal site.

1995

The temperature dependence (300 to 10 K) of the electronic absorption spectra of the cobalt chromophore in bovine superoxide dismutase (SOD) having the native Zn(II) ion selectivity replaced by Co(II) has been investigated in four different derivatives: Cu(II),Co(II) SOD, N3(-)-Cu(II), Co(II) SOD, Cu(I),Co(II) SOD, and E,Co(II) SOD in which the copper ion has been selectively removed. In the Cu(II),Co(II) SOD, the cobalt spectrum is characterized at room temperature by three bands centered at 18,472, 17,670, and 16,793 cm-1; the low-frequency band is split, at low temperatures, into two components, indicating a lower symmetry contribution to a predominantly tetrahedral crystal field. Additi…

Absorption spectroscopyChemistrySuperoxide Dismutasechemistry.chemical_elementCobaltBiochemistryCopperCatalysisSolventMetalCold TemperatureCrystallographychemistry.chemical_compoundSpectrophotometryvisual_artImidazolatevisual_art.visual_art_mediumAnimalsCattleAnion bindingCobaltBiochemistry
researchProduct

Modifications of optical absorption band of center in silica

2005

Abstract We report an experimental study of the modifications induced by gamma ray irradiation and by thermal treatment of both the electron paramagnetic resonance (EPR) and the optical absorption spectra of the E γ ′ center in silica. Our data show that the main g-values of E γ ′ EPR signal change as a function of the irradiation dose together with a red shift of the peak position of the absorption band around 5.8 eV attributed to the same center. Changes in the opposite direction are observed in both signals after thermal treatments. The peak position change of the optical absorption band is in quantitative agreement with the g-values shift. This strict correlation is evidence for the exi…

Absorption spectroscopyChemistryg-factorThermal treatmentCondensed Matter PhysicsSignalMolecular physicsElectronic Optical and Magnetic Materialslaw.inventionNuclear magnetic resonancelawAbsorption bandThermalMaterials ChemistryCeramics and Compositessense organsIrradiationElectron paramagnetic resonanceJournal of Non-Crystalline Solids
researchProduct

Biexciton formation and exciton coherent coupling in layered GaSe.

2015

Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarizati…

Absorption spectroscopyCondensed Matter::OtherPhononChemistryExcitonDephasingBinding energyGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectBloch equationsPhysical and Theoretical ChemistryAtomic physicsTriplet stateBiexcitonThe Journal of chemical physics
researchProduct

The role of Fe and Cu dopants in electron–hole trapping and relaxation process in congruent LiNbO3

2003

Abstract The transient optical absorption and kinetics of absorption decay is studied in undoped, Fe doped, and Cu doped LiNbO 3 crystals irradiated by pulsed electron beam. The 1.6 eV band of electron polaron trapped at antisite niobium was observed in all crystal samples. The nature of centers responsible for transient absorption is discussed. Electron polarons are shown to be less stable in LiNbO 3 :Fe compared with LiNbO 3 :Cu and undoped LiNbO 3 . It is suggested that a major part of electrons and holes created by irradiation are trapped in the vicinity of dopants.

Absorption spectroscopyCondensed matter physicsDopantChemistryOrganic ChemistryElectron holeElectronPolaronAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystalElectron beam processingElectrical and Electronic EngineeringPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)SpectroscopyOptical Materials
researchProduct

<title>Influence of radiation defects on exciton-magnon interactions in nickel oxide</title>

2005

Influence of radiation defects on the optical absorption spectrum of nickel oxide (NiO) was studied at 6 K in the near-IR energy range of 7750-8300 cm-1 corresponding to the magnetic-dipole transition 3A 2g(F )->3T 2g(F ) at nickel sites. NiO single crystals grown by the method of chemical transport reactions on the MgO(100) substrates were irradiated by the neutron fluences up to 5x1018 cm-2. Two sharp lines were observed at the low-energy side of the band: the peak at 7805 cm-1 is assigned to the pure exciton transition, whereas the peak at 7845 cm-1, to the exciton-magnon excitation that occurs at the Brillouin zone-center (BZC). An increase of the defect concentration at higher fluences…

Absorption spectroscopyCondensed matter physicsMagnetic dipole transitionNickel oxideMagnonExcitonchemistry.chemical_elementCondensed Matter::Materials ScienceNickelNuclear magnetic resonancechemistryCondensed Matter::Strongly Correlated ElectronsIrradiationAbsorption (electromagnetic radiation)SPIE Proceedings
researchProduct

Theoretical Study of the Electronic Excited States of Tetracyanoethylene and Its Radical Anion

2005

The low-lying electronic states of tetracyanoethylene (TCNE) and its radical anion were studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The results obtained yield a full interpretation of the electronic absorption spectra, explain the spectral changes undergone upon reduction, give support to the occurrence of a bound excited state for the anionic species, and provide valuable information for the rationalization of the experimental data obtained with electron transmission spectroscopy.

Absorption spectroscopyElectronic structureTetracyanoethyleneMolecular physicsAtomic and Molecular Physics and OpticsBond lengthchemistry.chemical_compoundchemistryAb initio quantum chemistry methodsComputational chemistryExcited stateElectron affinityPhysics::Chemical PhysicsPhysical and Theoretical ChemistrySpectroscopyChemPhysChem
researchProduct

Investigation of molecular dimers by ensemble and single molecule spectroscopy

2002

International audience; We have investigated molecular dimers with different electronic coupling strengths by bulk and single molecule spectroscopy. In one of the dimers the two monomers (perylene-monoimide) are directly connected via a single bond while in the other one they are separated by the benzil motif. The close proximity of the monomers in the first case gives rise to excitonic band splitting which is clearly observable in the bulk absorption spectra. For the benzil structure the electronic interactions are governed by Förster-type energy hopping between the monomers. Fluorescence intensity trajectories at the single molecule level show one-step and two-step bleaching behaviour whi…

Absorption spectroscopyExcitonBiophysics010402 general chemistryPhotochemistry01 natural sciencesBiochemistrychemistry.chemical_compoundElectronic interactionsSingle bondMolecule[CHIM]Chemical SciencesEmission spectrum010405 organic chemistryGeneral ChemistryCondensed Matter PhysicsMolecular aggregatesAtomic and Molecular Physics and Optics0104 chemical sciences3. Good healthCoupling (physics)MonomerchemistryChemical physicsExcitonsBenzilSingle molecule spectroscopy
researchProduct

Microscopic origin of the charge transfer in single crystals based on thiophene derivatives: A combined NEXAFS and density functional theory approach

2016

We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as w…

Absorption spectroscopyExtended X-ray absorption fine structureChemistryAnalytical chemistryGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsXANES0103 physical sciencesAtomCoulombDensity functional theoryAtomic numberPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyElectronic densityThe Journal of Chemical Physics
researchProduct

Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations

2011

Abstract Analysis of atomic structure at the nanoscale is a challenging task, complicated by relaxation phenomena and thermal disorder. In this work, the x-ray absorption spectroscopy at the Ni K-edge was used to address this problem in nanocrystalline NiO (nano-NiO) at 300 K. The analysis of the first two coordination shells using conventional two-shell single-scattering approximation allowed us to determine the expansion of the average lattice but contraction of the Ni―O bonds in the first coordination shell in nano-NiO in comparison with the bulk nickel oxide. The EXAFS signal generated within the first six coordination shells (up to ~ 6.5 A) was successfully interpreted using classical …

Absorption spectroscopyExtended X-ray absorption fine structureChemistryNickel oxideAb initioAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMolecular dynamicsK-edgeChemical physicsSurface-extended X-ray absorption fine structure0103 physical sciencesMaterials ChemistryCeramics and Compositesddc:660010306 general physics0210 nano-technology
researchProduct

Probing NiO nanocrystals by EXAFS spectroscopy

2010

Abstract The structure relaxation in nanocrystalline NiO (nano-NiO, 13 nm crystallite size) has been studied by X-ray absorption spectroscopy at the Ni K-edge at 300 K. Conventional single-scattering analysis of the EXAFS signals from the first two coordination shells showed a lattice volume expansion by about 1% and a contraction of the Ni–O bonds by about 0.5% in nano-NiO compared to microcrystalline NiO. A more sophisticated approach, based on a combination of classical molecular dynamics and ab initio multiple-scattering EXAFS theory, allowed us to interpret both static relaxation and lattice dynamics in nano-NiO.

Absorption spectroscopyExtended X-ray absorption fine structureChemistryNon-blocking I/OAb initio02 engineering and technologyGeneral ChemistryCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialCondensed Matter::Materials ScienceAb initio quantum chemistry methodsComputational chemistry0103 physical sciencesMaterials ChemistryPhysical chemistryCondensed Matter::Strongly Correlated ElectronsCrystallite010306 general physics0210 nano-technologySolid State Communications
researchProduct