Search results for "accelerator physics"
showing 10 items of 1294 documents
Polarization-Dependent Disappearance of a Resonance Signal -- Indication for Optical Pumping in a Storage Ring?
2021
We report on laser spectroscopic measurements on Li$^+$ ions in the experimental storage ring ESR at the GSI Helmholtz Centre for Heavy Ion Research. Driving the $2s\,^3\!{S}_1\;(F=\frac{3}{2}) \,\leftrightarrow\,2p\,^3\!P_2\;(F=\frac{5}{2}) \leftrightarrow 2s\,^3\!{S}_1\;(F=\frac{5}{2})$ $\Lambda$-transition in $^7$Li$^+$ with two superimposed laser beams it was found that the use of circularly polarized light leads to a disappearance of the resonance structure in the fluorescence signal. This can be explained by optical pumping into a dark state of polarized ions. We present a detailed theoretical analysis of this process that supports the interpretation of optical pumping and demonstrate…
Direct Measurement of Focusing Fields in Active Plasma Lenses
2018
Physical review accelerators and beams 21(12), 122801 (2018). doi:10.1103/PhysRevAccelBeams.21.122801
Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider
2014
The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in ord…
International workshop on next generation gamma-ray source
2022
Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827
Transition-Edge Sensors for Particle Induced X-ray Emission Measurements
2013
In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window…
Radiation from multi-GeV electrons and positrons in periodically bent silicon crystal
2014
A periodically bent Si crystal is shown to efficiently serve for producing highly monochromatic radiation in a gamma-ray energy spectral range. A short-period small-amplitude bending yields narrow undulator-type spectral peaks in radiation from multi-GeV electrons and positrons channeling through the crystal. Benchmark theoretical results on the undulator are obtained by simulations of the channeling with a full atomistic approach to the projectile-crystal interactions over the macroscopic propagation distances. The simulations are facilitated by employing the MBN Explorer package for molecular dynamics calculations on the meso-, bio- and nano-scales. The radiation from the ultra-relativist…
Design of a 10 GHz minimum-B quadrupole permanent magnet electron cyclotron resonance ion source
2020
This paper presents a simulation study of a permanent magnet electron cyclotron resonance ion source (ECRIS) with a minimum-B quadrupole magnetic field topology. The magnetic field is made to conform to conventional ECRIS with $B_\textrm{min}/B_\textrm{ECR}$ of 0.67 and a last closed magnetic isosurface of 1.86$B_\textrm{ECR}$ at 10 GHz. The distribution of magnetic field gradients parallel to the field, affecting the electron heating efficiency, cover a range from 0 to 13 T/m, being similar to conventional ECRIS. Therefore it is expected that the novel ion source produces warm electrons and high charge state ions in significant number. Single electron tracking simulations are used to estim…
Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project
2019
Abstract The effective electron neutrino mass measurement in the framework of the ECHo experiment requires radiochemically pure 163 Ho, which is ion implanted into detector absorbers. To meet the project specifications in efficiency and purity, the entire process chain of ionization, isotope separation , and implantation of 163Ho was optimized. A new two-step resonant laser ionization scheme was established at the 30 kV magnetic mass separator RISIKO. For ionization and separation, an average efficiency of 69 ( 5 ) stat(4)sys% was achieved using intra-cavity frequency doubled Ti:sapphire lasers. The implantation of undesired 166 m Ho, which is present in trace amounts in the initial 163Ho…
Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI
2020
Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Prel…
Characterization and Tuning of Ultra High Gradient Permanent Magnet Quadrupoles
2009
The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to $500\text{ }\text{ }\mathrm{T}\text{ }{\mathrm{m}}^{\ensuremath{-}1}$ at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the M…