Search results for "agent"
showing 10 items of 8904 documents
Acceptorless dehydrogenative condensation: synthesis of indoles and quinolines from diols and anilines.
2021
The use of diols and anilines as reagents for the preparation of indoles represents a challenge in organic synthesis. By means of acceptorless dehydrogenative condensation, heterocycles, such as indoles, can be obtained. Herein we present an experimental and theoretical study for this purpose employing heterogeneous catalysts Pt/Al2O3 and ZnO in combination with an acid catalyst (p-TSA) and NMP as solvent. Under our optimized conditions, the diol excess has been reduced down to 2 equivalents. This represents a major advance, and allows the use of other diols. 2,3-Butanediol or 1,2-cyclohexanediol has been employed affording 2,3-dimethyl indoles and tetrahydrocarbazoles. In addition, 1,3-pro…
Recent progress in the application of fluorinated chiral sulfinimine reagents
2018
Abstract The development of synthetic methodology allowing for a strategic incorporation of fluorine into target compounds is in a high demand in many areas of the chemical and pharmaceutical industries. In this regard, application of fluorinated chiral sulfinimine reagents, in particularly, N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine, is one of the most general and practical approaches for preparation of compounds containing pharmacophoric fluoro-amino-keto/hydroxy moieties. This article provides a timely and comprehensive overview of the recent synthetic applications of fluorinated chiral sulfinimine reagents for asymmetric synthesis of fluoro-containing polyfunctional amino-compound…
Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction.
2019
A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.
Fluorocyclization of N-Propargylamides to Oxazoles by Electrochemically Generated ArIF2
2019
A sustainable synthesis of 5-fluoromethyl-2-oxazoles by use of electrochemistry has been demonstrated. Hypervalent ArIF2 is generated by direct electrochemical oxidation of iodoarene ArI in Et3N·5HF and mediates the fluorocyclization of N-propargylamides to 5-fluoromethyl-2-oxazoles. The stoichiometry in ArI turned out to be a key parameter in controlling the product selectivity. This electrochemical protocol provides access to fluorinated oxazoles starting from simply available N-propargylamides with yields up to 65% and offers a green alternative over conventional reagent-based approaches.
Regioselective Metal- and Reagent-Free Arylation of Benzothiophenes by Dehydrogenative Electrosynthesis.
2018
A novel strategy for the synthesis of biaryls consisting of a benzothiophene and a phenol moiety is reported. These heterobiaryls are of utmost interest for pharmaceutical, biological, and high-performance optoelectronic applications. The metal- and reagent-free, electrosynthetic, and highly efficient method enables the generation of 2- and 3-(hydroxyphenyl)benzo[b]thiophenes in a regioselective fashion. The described one-step synthesis is easy to conduct, scalable, and inherently safe. The products are afforded in high yields of up to 88 % and with exquisite selectivity. The reaction also features a broad scope and tolerates a large variety of functional groups.
Chemical shift reagents in the study of polycyclic alcohols IX—1H NMR spectra of myrtenol and some other primary alcohols
1974
Structure proof of (—)-myrtenol, 3-cyclopentenyl-1-methanol and 5-norbornene-2-endo-methanol has been obtained from their proton magnetic resonance spectra in carbon tetrachloride containing different added amounts of tris(dipivaloylmethanato)europium. For each alcohol, a 1:1 complex structure with Eu(dpm)3 could be computed, in which the calculated pseudocontact shift effects on all skeleton protons of the ring system were consistent with the observed shift effect values. A considerable contact contribution of opposite sign to that of the pseudocontact part of the effect could be estimated for the methylene protons of the CH2OH group.
Versatile behavior of conjugated diynes with zirconocene reactive species
2008
Thermal decomposition of Cp2ZrPh2 in the presence of the buta-1,3-diynes RC≡CC≡CR (R = Ph, SiMe3) can lead to seven- or five-membered metallacycles. In both cases a stable benzo-fused seven-membered zirconacyclocumulene arising from a 2-fold insertion of the triple bonds of the dialkyne in the in situ generated zirconocene benzyne is formed. In the case of Me3SiC≡CC≡CSiMe3 a second minor complex is isolated: a 3-alkynyl-substituted zirconaindene arising from a β monoinsertion of one acetylenic function of the conjugated diyne in the zirconocene benzyne. No stable 2-alkynyl-substituted zirconacycle was isolated. This α monoinsertion complex is an intermediate in the exchange of the metalated…
2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions
2018
Iron‐catalyzed cross‐coupling reactions allow sustainable formation of C−C bonds using cost‐effective, earth‐abundant base‐metal catalysis for complex syntheses of pharmaceuticals, natural products, and fine chemicals. The major challenge to maintain full sustainability of the process is the identification of green and renewable solvents that can be harnessed to replace the conventional solvents for this highly attractive reaction. Herein, iron‐catalyzed cross‐coupling of aryl chlorides and tosylates with challenging organometallic reagents possessing β‐hydrogens is found to proceed in good to excellent yields with the green, sustainable, and eco‐friendly 2‐methyltetrahydrofuran (2‐MeTHF) a…
Reagent- and Metal-Free Anodic C-C Cross-Coupling of Aniline Derivatives.
2017
The dehydrogenative cross-coupling of aniline derivatives to 2,2′-diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared. The best results were obtained when glassy carbon was used as the anode material. The electrosynthetic reaction is easily performed in an undivided cell at slightly elevated temperature. In addition, common amine protecting groups based on carboxylic acids were employed that can be selectively removed under mild conditions after the cross-coupling, which provides quick and efficient access to important building blocks featuring free amine moieties.
Diastereoselectivity of the Addition of Propargylic Magnesium Reagents to Fluorinated Aromatic Sulfinyl Imines.
2021
The addition of propargylmagnesium bromide to fluorinated aromatic sulfinyl imines gave homopropargyl amines with total regio- and diastereoselection. Complete reversal of diastereoselectivity can be achieved in some cases using coordinating (THF) or noncoordinating (DCM) solvents. Substituted propargylic magnesium reagents have been also tested toward fluorinated aryl sulfinyl imines affording chiral homoallenyl amines with good yields and selectivity control. DFT calculations helped to rationalize the origin of the experimental regio- and diastereoselectivities observed in each case.