Search results for "analytic function"
showing 10 items of 52 documents
Analytic behavior of the QED polarizability function at finite temperature
2012
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is not analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calcul…
A rank theorem for analytic maps between power series spaces
1994
Regularity and Algebras of Analytic Functions in Infinite Dimensions
1996
A Banach space E E is known to be Arens regular if every continuous linear mapping from E E to E ′ E’ is weakly compact. Let U U be an open subset of E E , and let H b ( U ) H_b(U) denote the algebra of analytic functions on U U which are bounded on bounded subsets of U U lying at a positive distance from the boundary of U . U. We endow H b ( U ) H_b(U) with the usual Fréchet topology. M b ( U ) M_b(U) denotes the set of continuous homomorphisms ϕ : H b ( U ) → C \phi :H_b(U) \to \mathbb {C} . We study the relation between the Arens regularity of the space E E and the structure of M b ( U ) M_b(U) .
Homomorphisms between Algebras of Holomorphic Functions
2014
For two complex Banach spaces X and Y, in this paper, we study the generalized spectrum M-b(X,Y) of all nonzero algebra homomorphisms from H-b(X), the algebra of all bounded type entire functions on X into H-b(Y). We endow M-b(X,Y) with a structure of Riemann domain over L(X*,Y*) whenever.. is symmetrically regular. The size of the fibers is also studied. Following the philosophy of ( Aron et al., 1991), this is a step to study the set M-b,M-infinity (X,B-Y) of all nonzero algebra homomorphisms from Hb(b) (X) into H-infinity (B-Y) of bounded holomorphic functions on the open unit ball of Y and M-infinity(B-X,B-Y) of all nonzero algebra homomorphisms from H-infinity(B-X) into H infinity (B-Y…
The Bergman projection on weighted spaces: L1and Herz spaces
2002
We nd necessary and sucien t conditions on radial weights w on the unit disc so that the Bergman type projections of Forelli{Rudin are bounded on L 1 (w) and in the Herz spaces K q(w). 1. Introduction and preliminaries. The purpose of this paper is to study spaces of analytic functions on the unit disc D provided with a norm of a weighted Herz space. More precisely we consider the classical family of Bergman projections Ps, s > 1, and we give necessary and sucien t conditions on the weight making these projections continuous in the cor- responding weighted Herz space. We also consider the continuity of these
Rectifiability and analytic capacity in the complex plane
1995
Analytic capacity and removable sets In this chapter we shall discuss a classical problem in complex analysis and its relations to the rectifiability of sets in the complex plane C . The problem is the following: which compact sets E ⊃ C are removable for bounded analytic functions in the following sense? (19.1) If U is an open set in C containing E and f : U\E → C is a bounded analytic function, then f has an analytic extension to U . This problem has been studied for almost a century, but a geometric characterization of such removable sets is still lacking. We shall prove some partial results and discuss some other results and conjectures. For many different function classes a complete so…
Harnack and Shmul'yan pre-order relations for Hilbert space contractions
2015
We study the behavior of some classes of Hilbert space contractions with respect to Harnack and Shmul'yan pre-orders and the corresponding equivalence relations. We give some conditions under which the Harnack equivalence of two given contractions is equivalent to their Shmul'yan equivalence and to the existence of an arc joining the two contractions in the class of operator-valued contractive analytic functions on the unit disc. We apply some of these results to quasi-isometries and quasi-normal contractions, as well as to partial isometries for which we show that their Harnack and Shmul'yan parts coincide. We also discuss an extension, recently considered by S.~ter~Horst [\emph{J. Operato…
Infinite Dimensional Holomorphy
2019
We give an introduction to vector-valued holomorphic functions in Banach spaces, defined through Frechet differentiability. Every function defined on a Reinhardt domain of a finite-dimensional Banach space is analytic, i.e. can be represented by a monomial series expansion, where the family of coefficients is given through a Cauchy integral formula. Every separate holomorphic (holomorphic on each variable) function is holomorphic. This is Hartogs’ theorem, which is proved using Leja’s polynomial lemma. For infinite-dimensional spaces, homogeneous polynomials are defined as the diagonal of multilinear mappings. A function is holomorphic if and only if it is Gâteaux holomorphic and continuous…
Holomorphic Functions on Polydiscs
2019
This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Frechet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral …
Construction of canonical coordinates for exponential Lie groups
2009
Given an exponential Lie group G, we show that the constructions of B. Currey, 1992, go through for a less restrictive choice of the Jordan-Holder basis. Thus we obtain a stratification of g * into G-invariant algebraic subsets, and for each such subset Ω, an explicit cross-section Σ C Ω for coadjoint orbits in Ω, so that each pair (Ω, Σ) behaves predictably under the associated restriction maps on g * . The cross-section mapping σ: Ω → Σ is explicitly shown to be real analytic. The associated Vergne polarizations are not necessarily real even in the nilpotent case, and vary rationally with ∈ Ω. For each Ω, algebras e 0 (Ω) and e 1 (Ω) of polarized and quantizable functions, respectively, a…