Search results for "anode"

showing 10 items of 317 documents

High Bias Voltage CZT Detectors for High-flux Measurements

2017

In this work, we present the performance of new travelling heater method (THM) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Thick planar detectors (3 mm thick) with gold electroless contacts on CZT crystals grown by Redlen Technologies (Victoria BC, Canada) were realized, with a planar cathode covering the detector surface (4.1 x 4.1 mm(2)) and a central anode (2 x 2 mm(2)) surrounded by a guard ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA/cm(2) at 1000 V/cm), allow good room temperature operation even at high bias voltages (> 7000 V/cm). At low rates, the detectors exhibit an energy resolution around 4 % FWIEM at 59.5…

radiation detectorRadiology Nuclear Medicine and ImagingMaterials sciencePreamplifier02 engineering and technology01 natural scienceslaw.inventionlawpixel0103 physical sciencesInstrumentationNuclear and High Energy Physic010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleElectrical engineeringBiasing021001 nanoscience & nanotechnologyPhoton countingCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)AnodeElectronic Optical and Magnetic MaterialsCZTFull width at half maximumHigh Fluxhigh bias voltageOptoelectronicssemiconductor detector0210 nano-technologybusinessVoltage
researchProduct

NANOSTRUCTURED ANODE MATERIAL FOR Li-ION BATTERY OBTAINED BY GALVANIC PROCESS

2016

The accumulation of energy by batteries plays a fundamental role for the production of electrical energy and for its efficient management. Between different storage systems the lithium-ion battery are considered very interesting. Although they are now a well-established commercial reality, they are still subject of vigorous research efforts, in order to make improvements primarily in terms of costs, safety and energy density. The latter is in fact still low compared to that of fossil fuels, if you think to the automotive field. In particular efforts are focused towards the identification of valid alternatives to the electrode materials so as to overcome the limitations and extend the use of…

Settore ING-IND/23 - Chimica Fisica ApplicataNANOSTRUCTURES ANODE MATERIAL Li-ION BATTERY GALVANIC PROCESS
researchProduct

ChemInform Abstract: Efficient Anodic and Direct Phenol-Arene C,C Cross-Coupling: The Benign Role of Water or Methanol.

2012

For the first time a significantly improved electrochemical C-C cross-coupling is reported.

Coupling (electronics)chemistry.chemical_compoundchemistryPhenolGeneral MedicineMethanolPhotochemistryElectrochemistryAnodeChemInform
researchProduct

Exploring High-Energy Li-I(r)on Batteries and Capacitors with Conversion-Type Fe3O4-rGO as the Negative Electrode

2017

We report a microwave-assisted solvothermal process for the preparation of magnetite (Fe3O4, ca. 5 nm)-anchored reduced graphene oxide (rGO). It has been examined as a prospective conversion-type negative electrode for multiple energy storage applications, such as Li-ion batteries (LIBs) and Li-ion capacitors (LICs). A LiFePO4/Fe3O4-rGO cell is constructed and capable of delivering an energy density of approximately 139 Wh kg−1 with a notable cyclability (ca. 76 %) after 500 cycles. Prior to the fabrication of a LIB, the Fe3O4-rGO is electrochemically pretreated to eliminate the irreversible capacity loss. In addition to the LIB, a high-energy LIC is also fabricated by using the pre-lithiat…

Materials scienceGrapheneAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesCatalysisEnergy storageCathode0104 chemical sciencesAnodelaw.inventionCapacitorChemical engineeringlawElectrodeElectrochemistry0210 nano-technologyCapacity lossChemElectroChem
researchProduct

Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer

2021

Abstract Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried…

Materials scienceHydrogenEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistryElectrosynthesisElectrochemistry01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionlawSettore ING-IND/17 - Impianti Industriali MeccaniciTafel equationElectrolysisRenewable Energy Sustainability and the EnvironmentAlkaline water electrolysisOxygen evolution021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAnodeFuel TechnologySettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistry0210 nano-technologyAlkaline electrolyzer HER Nanostructured electrodes Ni–Co Alloy OER Template electrosynthesis
researchProduct

Nanoscale X-ray detectors based on individual CdS, SnO2 and ZnO nanowires

2021

Abstract The development of nanoscale X-ray sensors is of crucial importance to achieve higher spatial resolution in many X-ray-based techniques playing a key role in materials science, healthcare, and security. Here, we demonstrate X-ray detection using individual CdS, SnO 2 , and ZnO nanowires (NWs). The NWs were produced via vapor–liquid–solid technique and characterized using X-ray diffraction, scanning, and transmission electron microscopy . Electrical measurements were performed under ambient conditions while exposing two-terminal NW-based devices to X-rays generated by a conventional tungsten anode X-ray tube. Fast and stable nanoampere-range X-ray beam induced current (XBIC) in resp…

PhysicsNuclear and High Energy Physicsbusiness.industryNanowireX-ray detectorchemistry.chemical_element02 engineering and technologyTungsten010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAnodechemistryTransmission electron microscopyOptoelectronicsCharge carrierElectrical measurements0210 nano-technologybusinessInstrumentationNanoscopic scaleNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Amorphous semiconductor—electrolyte junction. Energetics at the a-WO3—electrolyte junction

1991

In order to elucidate the influence of thickness and amorphous structure on the kinetics of electron exchange with redox couples in solution, a critical re-examination of the energetics at the amorphous anodic WO3 films (a-WO3)—electrolyte junction has been performed, based on a recent theory of amorphous semiconductor (a-SC) Schottky barrier. The admittance study of the barrier performed in a large interval of electrode potential at changing frequency and film thickness allowed the determination of the energy levels as well as the distribution of localized electronic states within the mobility gap of the films. The new energetic picture derived is able to explain some features of the kinet…

Materials scienceAdmittanceChemical physicsGeneral Chemical EngineeringSchottky barrierKineticsElectrochemistryElectrolyteRedoxAnodeAmorphous solidElectrode potentialElectrochimica Acta
researchProduct

Influence of the crystallization process on the photoelectrochemical behaviour of anodic TiO2 films

1997

On the basis of kinetic and photoelectrochemical studies we show that the formation of amorphous or strongly disordered TiO2 films on electropolished titanium rods can occur upon anodization in 0.5 M H2SO4 solution in a range of thickness which depends on the anodization rate. This finding is confirmed both by the changes in the shape of the photocurrent vs. potential curves with the energy of the incident photons, and by the impedance behaviour of the junction. Our data indicate that TiO2 films having different degree of disorder are formed depending on the anodization rate and oxide thickness. Crystalline films are formed at very low growth rates since very low thicknesses. Amorphous or s…

PhotocurrentMaterials scienceAnodizingGeneral Chemical EngineeringOxideMineralogychemistry.chemical_elementAmorphous solidAnodelaw.inventionchemistry.chemical_compoundchemistryChemical engineeringlawGrowth rateCrystallizationTitaniumBerichte der Bunsengesellschaft für physikalische Chemie
researchProduct

ChemInform Abstract: Access to Pyrazolidin-3,5-diones Through Anodic N-N Bond Formation.

2016

Pyrazolidin-3,5-diones are important motifs in heterocyclic chemistry and are of high interest for pharmaceutical applications. In classic organic synthesis, the hydrazinic moiety is installed through condensation using the corresponding hydrazine building blocks. However, most N,N'-diaryl hydrazines are toxic and require upstream preparation owing to their low commercial availability. We present an alternative and sustainable synthetic approach to pyrazolidin-3,5-diones that employs readily accessible dianilides as precursors, which are anodically converted to furnish the N-N bond. The electroconversion is conducted in a simple undivided cell under constant-current conditions.

chemistry.chemical_compoundchemistryHigh interestCondensationHydrazineMoietyOrganic synthesisGeneral MedicineBond formationCombinatorial chemistryAnodeChemInform
researchProduct

Studio di materiali avanzati per celle a combustibile ad ossidi solidi: influenza dei droganti e delle tecniche di sintesi sulle proprietà di anodi e…

2014

Today fuel cell (FC) technology is envisaged as a strategic alternative for providing clean energy through the exploitation of renewable sources; FC research is substantially funded by governments as a mean to meet the global market demand of zero environmental impact. Due to the high level of efficiency, FC devices are already able to compete with the existing power generation technologies and, in particular, solid oxide fuel cells (SOFCs) plants for stationary application constitute one the most efficient way to produce electric power and heat. Nowadays, the main challenges for SOFC research activity are: i) improving costs and durability, by reducing the operating temperature from ∼1000°…

anodeSettore CHIM/03 - Chimica Generale E InorganicaSOFCelectrolyte
researchProduct