Search results for "antennas"

showing 10 items of 32 documents

Feasibility, limitations and potentiality of UHF-RFID passive implants

2012

Implanted RFID may play an important role in the personal Healthcare of next future. Antenna embedded into prosthesis or into other implanted medical devices could permit to monitor physiological and pathological processes, providing a natural interconnection to remote services. The big technical challenge is to establish a stable RFID link with the interior of the human body in spite of the high electromagnetic losses of the tissues. By using parametric electromagnetic models and some early result, it is here investigated the potentiality and limitation of the UHF implants with special attention to the body district, the overall mass, and the size of the antennas.

InterconnectionEngineeringUltra high frequencybusiness.industryElectronic engineeringElectromagnetic modelAntenna (radio)businessImplantable antennas rfid sensorUhf antennas
researchProduct

Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas

2020

We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…

Detection sensitivityMaterials sciencelcsh:BiotechnologyCesium compoundsPhysics::Optics02 engineering and technologyDielectricPerovskiteLead compoundsperovskite solar cells01 natural sciences7. Clean energyCondensed Matter::Materials Sciencenanocrystalslcsh:TP248.13-248.650103 physical sciencesEnhanced absorptionSemiconductor quantum dotsElectronic transitionGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAbsorption (electromagnetic radiation)perovskitePerovskite (structure)010302 applied physicsScatteringbusiness.industryGeneral Engineering021001 nanoscience & nanotechnologylcsh:QC1-999NanocrystalsNear field effectNanocrystalAtomic electron transitionQuantum dotOptoelectronicsTitanium dioxideAntennasDark-field scatteringsLow cost approachPhotonics0210 nano-technologybusinessOrganic moleculeslcsh:PhysicsBromine compoundsEmission enhancement
researchProduct

Antenna Tapering Strategy for Near-Field Enhancement Optimization in Terahertz Gold Nanocavities

2019

Plasmonic nanoantennas (NAs) have received a growing attention in recent years due to their ability to confine light on sub-wavelength dimensions [1]. More recently, this property has been exploited in the terahertz (THz) frequency range (0.1–10 THz) for enhanced sensing and spectroscopy [2], as well as for more fundamental investigations [3]. These applications typically require high local electric fields that can be achieved by concentrating THz radiation into deeply sub-wavelength volumes located at the NAs extremities. However, the achievable near-field enhancement values are severely limited by the poor resonance quality factor of traditional rod-shaped THz NAs. Unlike what is commonly…

Materials scienceTerahertz radiationbusiness.industryNear and far fieldTapering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaResonatorGold Spectroscopy Extremities Q-factor Geometry Antennas PlasmonsOpticsElectric field0103 physical sciencesReflection (physics)Reflection coefficient010306 general physics0210 nano-technologybusinessPlasmon
researchProduct

Performance Analysis of Cooperative V2V and V2I Communications Under Correlated Fading

2019

Cooperative vehicular networks will play a vital role in the coming years to implement various intelligent transportation-related applications. Both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications will be needed to reliably disseminate information in a vehicular network. In this regard, a roadside unit (RSU) equipped with multiple antennas can improve the network capacity. While the traditional approaches assume antennas to experience independent fading, we consider a more practical uplink scenario where antennas at the RSU experience correlated fading. In particular, we evaluate the packet error probability for two renowned antenna correlation models, i.e., cons…

Signal Processing (eess.SP)FOS: Computer and information sciencesvehicle-to-infrastructure (V2I)Computer scienceComputer Science - Information TheoryReliability (computer networking)Real-time computingStackelberg gameComputer Science - Networking and Internet Architecturelangaton tiedonsiirto0502 economics and businessTelecommunications linkFOS: Electrical engineering electronic engineering information engineeringStackelberg competitionpeliteoriaFadingfading channelsElectrical Engineering and Systems Science - Signal ProcessingIntelligent transportation systemerror probabilitygamesNetworking and Internet Architecture (cs.NI)liikennetekniikka050210 logistics & transportationVehicular ad hoc networkreliabilityNetwork packetsignal to noise ratioInformation Theory (cs.IT)Mechanical Engineering05 social sciencesvehicle-to-vehicle (V2V)rakenteettomat verkotTransmitter power outputComputer Science Applicationsantenna correlationAutomotive Engineeringälytekniikkavehicular ad hoc networksantennas
researchProduct

Optical Plasmonic Yagi-Uda Nano-Antennas Array for Energy Harvesting Applications

2020

Optical nanoantennas have been of great interest recently due to their ability to support a highly efficient, localized surface plasmon resonance and produce significantly enhanced and highly confined electromagnetic fields. The Yagi-Uda nanoantenna, an optical analogue of the well-established radiofrequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. In this paper, the design of an optical plasmonic Yagi-Uda nanoantenna for energy harvesting application is proposed. The enhancement of the directivity is reached by means of an organization in array. The simulation results, carried out by 3D code CST Studio, show that the proposed nanoantenna …

Electromagnetic fieldPhysicsbusiness.industry020206 networking & telecommunicationsOptical polarization02 engineering and technology021001 nanoscience & nanotechnologyarray energy harvesting optical nanoantennas plasmonic Yagi-UdaDirectivity0202 electrical engineering electronic engineering information engineeringOptoelectronicsLight emissionAntenna (radio)Surface plasmon resonance0210 nano-technologybusinessEnergy harvestingPlasmon2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)
researchProduct

Electrodynamic Characteristics of a Strip Antenna Located on a Plane Interface of a Resonant Magnetoplasma and an Isotropic Medium

2015

We study the electrodynamic characteristics of an antenna having the form of an infinitesimally thin, perfectly conducting narrow strip located on a plane interface of a resonant magnetoplasma and an isotropic medium. The antenna is perpendicular to an external magnetic field and is excited by a given voltage. Singular integral equations for the antenna current, on the basis of which the current distribution is found in the case of an infinitely long radiator, are obtained. The limits of applicability of an approximate method based on the transmission line theory for determining the current distribution and input impedance of the antenna are established. Within the framework of this method,…

PhysicsNuclear and High Energy PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPlane (geometry)business.industryIsotropyAstronomy and AstrophysicsStatistical and Nonlinear PhysicsInput impedanceSingular integralresonant magnetoplasmaElectronic Optical and Magnetic MaterialsMagnetic fieldElectrodynamic characteristicElectrodynamic characteristics; metal antennas; resonant magnetoplasmaOpticsTransmission linePerpendicularmetal antennaElectrical and Electronic EngineeringAntenna (radio)businessComputer Science::Information Theory
researchProduct

Tunable Optical Antennas Using Vanadium Dioxide Metal-Insulator Phase Transitions

2019

Here, we investigate the possibility of exploiting the insulator-to-metal transition in vanadium dioxide (VO2) to tune and optically control the resonances of dipole nanoantennas in the visible near-infrared region. We compare the results obtained in the case of antennas completely made by VO2 with those of previous works and highlight the key role of the substrate to perform dynamical tuning. We also present a highly efficient configuration composed of dipole gold antenna loaded with VO2 and give some general guidelines to optimally exploit phase transitions to tune nanodevices.

Phase transitionMaterials scienceBiophysics02 engineering and technologySubstrate (electronics)Nanoantennas Phase-changing materials Plasmonics Vanadium dioxide01 natural sciencesBiochemistrySettore FIS/03 - FISICA DELLA MATERIA010309 opticsVanadium dioxide0103 physical sciencesMetal insulatorPhase-changing materialsPlasmonNanoantennas; Phase-changing materials; Plasmonics; Vanadium dioxidebusiness.industryNanoantennasVanadium dioxideSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyDipoleNanoantennas; Phase-changing materials; Plasmonics; Vanadium dioxide; Biotechnology; Biophysics; BiochemistryOptoelectronicsPlasmonicsCondensed Matter::Strongly Correlated ElectronsAntenna (radio)0210 nano-technologybusinessBiotechnology
researchProduct

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

2017

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyCredible regionsGeneral Physics and Astronomyadvanced ligoADVANCED LIGOAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationVIRGO detectorFilter signalsGW170814TOOLLIGOInterferometerGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)010303 astronomy & astrophysicsQCchoiceQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectstoolFalse alarm rateCHOICEAntenna responseGravitational-wave signalsDetector networks[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenagravitational radiation: polarizationSignal processingAstrophysics::High Energy Astrophysical Phenomenablack hole: binary: coalescenceFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionGravitational-wave astronomy[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]General Relativity and Quantum CosmologyPhysics and Astronomy (all)Binary black hole0103 physical sciencesGW151226ddc:530KAGRASTFCGw150914GW170814 Virgo LIGO010308 nuclear & particles physicsGravitational wavePhysiqueVirgogravitational radiationAstronomyRCUKMatched filtersblack hole: massStarsLIGOgravitational radiation detectorBlack holeradiationVIRGOPhysics and AstronomyTesting Relativistic Gravitygravitationgravitational radiation: emissionStellar-mass black holesRADIATIONStellar black holeHigh Energy Physics::ExperimentAntennasDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Dependence of Terahertz Emission and Detection in Photoconductive Antennas on Laser Parameters

In this study, we employ a standard Terahertz time-domain spectroscopy (THz-TDS) setup based on two photoconductive antennas (PCAs) for THz radiation generation and detection. The characterization of the emission and detection performance as a function of the input pulse wavelength and bandwidth is performed.

THz time-domain spectroscopyphotoconductive antennasSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

2012

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

Ciencias Astronómicas[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical Phenomenashowers: atmosphere | cosmic radiation: UHE | polarization: effect | Auger | radio wave: emission | radio wave: detector | galaxy | background | reflection | noise | detector: networkFOS: Physical sciencesCosmic ray01 natural sciencesSignalKASCADEMHZOpticsSIGNALS0103 physical sciencesTransient responseTime domain010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physics[PHYS]Physics [physics]PhysicsPierre Auger ObservatorySPECTRUMLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsbusiness.industryPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]ATMOSFERA (MONITORAMENTO)Air showerAntennaExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONAntennasFísica nuclearAntenna (radio)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct