Search results for "antiferromagnet"

showing 10 items of 506 documents

Fully interlocked three-dimensional molecular scaffolding: Synthesis, X-ray structure, magnetic and nitrogen sorption study

2012

Abstract The reaction of M(NO3)2·6H2O (M = Co or Ni), N,N-diethyl-ethylenediamine (deen) and sodium dicyanamide (dca) afforded the complex {[M(deen)(μ1,5-dca)2]}n (where for 1, M = Co and for 2, M = Ni). The complexes have been characterized structurally and magnetically. X-ray analysis reveals that the isomorphous complexes 1 and 2 feature similar infinite three-dimensional scaffolding-like structure to generate the fascinating molecular assembly. All the {N(CN)2}− ligands present in the complexes are connected to the symmetry related metal centers in an end-to-end fashion through bent {N(CN)2}− ligands. The zigzag linkage propagates parallel to three crystallographic axes to form a fully …

ChemistrySorptionMagnetic susceptibilityInorganic ChemistryMetalCrystallographychemistry.chemical_compoundParamagnetismZigzagvisual_artX-ray crystallographyMaterials Chemistryvisual_art.visual_art_mediumAntiferromagnetismPhysical and Theoretical ChemistryDicyanamideInorganica Chimica Acta
researchProduct

Synthesis, crystal structure and magnetic properties of the chiral iron(II) chain [Fe(bpym)(NCS)2]n (bpym = 2,2′-bipyrimidine)

1996

Abstract The iron(II) compound of formula [Fe(bpym)(NCS)2]n (bpym = 2,2′-bipyrimidine) has been synthesized and its crystal structure determined by X-ray diffraction methods. It crystallizes in the tetragonal P41 (No. 76) and P43 space groups, a = 8.849(2), c=16.486(3) A , V=1290.9(5) A 3 , Z=4, D c =1.699 g cm −3 , M r =330.2, F(000)=664, λ( Mo K α)=0.71073 A , μ( Mo K α)=14.8 cm −1 and T=295 K. A total of 2449 reflections was collected over the range 3≤2ϑ≤55°; of these, 1657 were unique and 1321 were considered as observed (13σ(I)) and used in the structural analysis. The final R and Rw residuals were 0.027 and 0.026, respectively. The structure is made up of chiral (Δ and Λ enantiomers c…

ChemistrySpace groupCrystal structureMagnetic susceptibilityInorganic ChemistryMetalCrystallographyTetragonal crystal systemOctahedronvisual_artAtomMaterials Chemistryvisual_art.visual_art_mediumAntiferromagnetismPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

A Combined Experimental and Theoretical Study on Bis(μ‐alkoxo)diiron(III) Complexes with Hydroxybenzylaminoethanol [O,N,O] Donor Ligands: Syntheses, …

2011

Three new neutral bis(μ-alkoxo)diiron(III) complexes were prepared from N(R),N-(2-methylene-4,6-di-tert-butylphenol)aminoethan-1-ol ligands (H2L1, R = Me and H2L2, R = H). In these complexes, the ligand wraps around the metal center exhibiting a tridentate facial coordination mode with alkoxo-bridging oxygen, amine nitrogen and phenoxo oxygen donor atoms. In the complex [Fe(acac)L1]2·MeCN (1) acetylacetonato coligand complete the distorted octahedral coordination spheres of the iron(III) ions, whereas in the five-coordinate iron(III) chloride complexes [FeClL1]2 (2) and [FeClL2]2 (3) the ligands induce a geometry that is intermediate between square pyramidal and trigonal bipyramidal. Magnet…

ChemistryStereochemistryLigandSquare pyramidal molecular geometryInorganic ChemistryMetalTrigonal bipyramidal molecular geometryCrystallographyFerromagnetismOctahedronvisual_artvisual_art.visual_art_mediumAntiferromagnetismAmine gas treatingta116European Journal of Inorganic Chemistry
researchProduct

Ferromagnetic coupling and magnetic anisotropy in oxalato-bridged trinuclear chromium(iii)-cobalt(ii) complexes with aromatic diimine ligands

2010

Two novel heterotrinuclear chromium(III)-cobalt(II) complexes of formula {[Cr(III)(bpy)(ox)(2)](2)Co(II)(Me(2)bpy)}.2H(2)O (1) and {[Cr(III)(phen)(ox)(2)](2)Co(II)(Me(2)bpy)}.1.5H(2)O (2) [ox = oxalato, bpy = 2,2'-bipyridine, Me(2)bpy = 6,6'-dimethyl-2,2'-bipyridine, and phen = 1,10-phenanthroline] have been synthesized using the "complex-as-ligand/complex-as-metal" strategy. The X-ray crystal structure of 2 consists of neutral oxalato-bridged Cr(III)(2)Co(II) bent entities formed by the coordination of two anionic [Cr(III)(phen)(ox)(2)](-) complexes through one of their oxalato groups toward a cationic cis-[Co(II)(Me(2)bpy)](2+) complex. The three tris(chelated), six-coordinated metal atom…

ChromiumModels MolecularOxalatesMolecular StructureChemistryStereochemistrySupramolecular chemistryStereoisomerismCobaltCrystal structureCrystallography X-RayLigandsMagnetic susceptibilityInorganic ChemistryMagneticsCrystallographyMagnetic anisotropyIntramolecular forceOrganometallic CompoundsAnisotropyAntiferromagnetismMolecular orbitalIminesDiimineDalton Trans.
researchProduct

A new Co(II) coordination solid with mixed oxygen, carboxylate, pyridine and thiolate donors exhibiting canted antiferromagnetism with TC ≈ K

2006

Reaction of Co(II) chloride with the sodium salt of 2-mercaptonicotinic acid in water at 200 ºC results in the formation of Co4(2-mna)4(H2O), which orders as a canted antiferromagnet at 68 K. Gomez Garcia, Carlos Jose, Carlos.Gomez@uv.es

CoOxygenMercaptonicotinic acidCo ; Oxygen ; Carboxylate ; Pyridine ; Sodium salt ; Mercaptonicotinic acid ; AntiferromagnetPyridineUNESCO::QUÍMICACarboxylateSodium salt:QUÍMICA::Química macromolecular [UNESCO]UNESCO::QUÍMICA::Química macromolecularAntiferromagnet:QUÍMICA [UNESCO]
researchProduct

Evidence of nickel ions dimerization in NiWO$_4$ and NiWO$_4$-ZnWO$_4$ solid solutions probed by EXAFS spectroscopy and reverse Monte Carlo simulatio…

2021

G.B. acknowledges the financial support provided by the State Education Development Agency for project No.1.1.1.2/VIAA/3/19/444 (agreement No. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. A.K. and A.K. would like to thank the support of the Latvian Council of Science project No. lzp-2019/1-0071. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Condensed Matter - Materials ScienceEXAFSNiWO4solid solutions:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesZnWO4antiferromagnetsreverse Monte Carlo
researchProduct

Giant Anomalous Nernst Effect in Noncollinear Antiferromagnetic Mn-based Antiperovskite Nitrides

2020

The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in nonco…

Condensed Matter - Materials ScienceHeat currentMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFermi energy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeAntiperovskiteFerromagnetism0103 physical sciencessymbolsAntiferromagnetismGeneral Materials Scienceddc:530Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyOrder of magnitudeNernst effectSpin-½
researchProduct

Spin transport in multilayer systems with fully epitaxial NiO thin films

2018

We report the generation and transport of thermal spin currents in fully epitaxial $\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3}/\mathrm{NiO}(001)/\mathrm{Pt}$ and $\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4}/\mathrm{NiO}(001)/\mathrm{Pt}$ trilayers. A thermal gradient, perpendicular to the plane of the sample, generates a magnonic spin current in the ferrimagnetic maghemite $(\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3})$ and magnetite $(\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4})$ thin films by means of the spin Seebeck effect. The spin current propagates across the epitaxial, antiferromagnetic insulating NiO layer…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsMagnonNon-blocking I/OInverseMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesCondensed Matter::Materials ScienceFerrimagnetism0103 physical sciencesSpin Hall effectAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½
researchProduct

Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films

2018

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. Th…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetoresistance530 PhysicsNon-blocking I/OMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostrictionInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy530 Physik01 natural sciencesCondensed Matter::Materials ScienceAmplitude0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technology
researchProduct

Imaging of current induced Néel vector switching in antiferromagnetic Mn 2 Au

2019

The effects of current induced N\'eel spin-orbit torques on the antiferromagnetic domain structure of epitaxial Mn$_2$Au thin films were investigated by X-ray magnetic linear dichroism - photoemission electron microscopy (XMLD-PEEM). We observed current induced switching of AFM domains essentially corresponding to morphological features of the samples. Reversible as well as irreversible N\'eel vector reorientation was obtained in different parts of the samples and the switching of up to 30 % of all domains in the field of view of 10 $\mu$m is demonstrated. Our direct microscopical observations are compared to and fully consistent with anisotropic magnetoresistance effects previously attribu…

Condensed Matter - Materials ScienceMaterials scienceCurrent (mathematics)Condensed matter physicsMagnetoresistance02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural sciences3. Good healthCondensed Matter::Materials Science0103 physical sciencesDomain (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technologyPhysical Review B
researchProduct