Search results for "antimatter"

showing 10 items of 64 documents

Towards a test of the weak equivalence principle of gravity using anti-hydrogen at CERN

2016

International audience; The aim of the GBAR (Gravitational Behavior of Antimatter at Rest) experiment is to measure the free fall acceleration of an antihydrogen atom, in the terrestrial gravitational field at CERN and therefore test the Weak Equivalence Principle with antimatter. The aim is to measure the local gravity with a 1% uncertainty which can be reduced to few parts of 10-3.

Free fallGravity (chemistry)Particle physicsPhysics::General PhysicsAntimatterCERN LabGravityacceleration measurementterrestrial gravitational fieldfree fall acceleration01 natural sciencesantihydrogen: accelerationweak equivalence principle010305 fluids & plasmasparticle trapsAtomic measurementsGravitationGeneral Relativity and Quantum Cosmologyhydrogen: ionGravitational fieldLaser transitionsAtom (measure theory)0103 physical sciencesPhysics::Atomic and Molecular Clusters[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsAntihydrogenantihydrogen atomPhysicsIonsatomProductionEquivalence principle (geometric)laserequivalence principleAntimatter[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]talk: Ottawa 2016/07/10gravitation: localhydrogen ionsCoolingGravitation
researchProduct

Decoherent neutrino mixing, dark energy, and matter-antimatter asymmetry

2004

A CPT violating decoherence scenario can easily account for all the experimental evidence in the neutrino sector including LSND. In this work it is argued that this framework can also accommodate the Dark Energy content of the Universe, as well as the observed matter-antimatter asymmetry.

High Energy Physics - TheoryPhysics::General PhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsCPT symmetrymedia_common.quotation_subjectFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyCosmologyNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Neutrino oscillationComputer Science::Databasesmedia_commonPhysicsHigh Energy Physics::PhenomenologyFísicaUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Neutrino detectorAntimatterDark energyHigh Energy Physics::ExperimentNeutrinoPhysical Review D
researchProduct

Theory of Neutrinos: A White Paper

2005

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ``The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the e…

Neutrino mass physics; Matter-antimatter asymmetry of the UniverseParticle physicsSupersymmetric Standard ModelPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaElectric-dipole momentsPhysics beyond the Standard ModelFOS: Physical sciencesGeneral Physics and AstronomyTheoretical researchHigh Energy Physics - Phenomenology (hep-ph)White paperSee-saw mechanismneutriniPublicationParticle Physics - PhenomenologyPhysicsLepton-flavor violationDiscussion groupbusiness.industryHigh Energy Physics::PhenomenologyFísicaMatter-antimatter asymmetry of the UniverseDouble beta decaySettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciEpistemologyElectroweak symmetry-breakingHigh Energy Physics - PhenomenologyLarge extra dimensionsNeutrino mass physicsHeavy Majorana neutrinosHigh Energy Physics::ExperimentRight-handed neutrinoNeutrinoAnomalous magnetic momentWorking groupbusiness
researchProduct

Event Excess in the MiniBooNE Search forν¯μ→ν¯eOscillations

2010

The MiniBooNE experiment at Fermilab reports results from a search for {nu}{sub {mu}{yields}{nu}e} oscillations, using a data sample corresponding to 5.66x10{sup 20} protons on target. An excess of 20.9{+-}14.0 events is observed in the energy range 475<E{sub {nu}}{sup QE}<1250 MeV, which, when constrained by the observed {nu}{sub {mu}} events, has a probability for consistency with the background-only hypothesis of 0.5%. On the other hand, fitting for {nu}{sub {mu}{yields}{nu}e} oscillations, the best-fit point has a {chi}{sup 2} probability of 8.7%. The data are consistent with {nu}{sub {mu}{yields}{nu}e} oscillations in the 0.1 to 1.0 eV{sup 2} {Delta}m{sup 2} range and with the evidence…

Nuclear physicsMiniBooNEPhysicsParticle physicsAntiparticleAntimatterGeneral Physics and AstronomyNeutrinoNeutrino oscillationParticle identificationEnergy (signal processing)LeptonPhysical Review Letters
researchProduct

A test of charge-parity-time invariance at the atto-electronvolt scale

2017

We developed a novel fast measurement procedure for cyclotron frequency comparisons of two individual particles in a Penning trap, which enabled us to compare the charge-to-mass ratio of the proton and the antiproton with a fractional precision of 69 parts per trillion. To date this is the most precise test of charge-parity-time invariance using baryons. Our measurements were performed at cyclotron frequencies of about 30 MHz, which means that charge-parity-time symmetry holds at the atto-electronvolt scale.

Nuclear physicsPhysicsBaryonAntiparticleScale (ratio)Physics in GeneralAntimatterElectronvoltPräzisionsexperimente - Abteilung BlaumParity (mathematics)NucleonNuclear ExperimentAtto-
researchProduct

Estimates of the Nuclear Time Delay in Dissipative U + U and U + Cm Collisions Derived from the Shape of Positron andδ-Ray Spectra

1983

Positron and delta-ray spectra have been measured in coincidence with quasielastic scattered particles and fission fragments from the bombardment of Pd, U, and Cm targets with U beams of energies between 5.9 and 8.4 MeV/u. For collisions leading to a fission reaction, the atomic positron and delta-ray spectra fall off more steeply at high energies than expected from calculations based on pure Rutherford trajectories. A quantitative analysis of this effect is in accord with a nuclear contact time of about 10/sup -21/ s.

Nuclear reactionElastic scatteringPhysicsAntiparticleFissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and AstronomyNuclear physicssymbols.namesakePositronNuclear fissionAntimattersymbolsPhysics::Accelerator PhysicsRutherford scatteringAtomic physicsNuclear ExperimentPhysical Review Letters
researchProduct

Leptophobic dark matter and the baryon number violation scale

2019

We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments…

Particle physicsCold dark mattermedia_common.quotation_subjectDark matterFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSymmetry breaking010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyDirac fermionAntimattersymbolsBaryon numberPhysical Review
researchProduct

Particle Physics in High School: A Diagnose Study

2016

Abstract The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics …

Particle physicsComposite ParticlesAntimatterProcess (engineering)Physics educationFundamental Interactionslcsh:MedicineSocial SciencesProfessors Formació01 natural sciencesEducationSociology0103 physical sciencesHumansLearninglcsh:Science010306 general physicsParticle PhysicsStudentsCurriculumNuclear PhysicsNucleonsPhysicsMultidisciplinarySchoolsPhysicslcsh:R05 social sciences050301 educationFísicaFundamental interactionElementary Particle InteractionsEducació InvestigacióTest (assessment)Ciència EnsenyamentKnowledgeAttitudeDynamics (music)Physical Scienceslcsh:QCurriculumScience learningProtonsWeak Interaction0503 educationHuman learningResearch ArticlePLoS ONE
researchProduct

Measurement of e+e−→π+π−ψ(3686) from 4.008 to 4.600 GeV and observation of a charged structure in the π±ψ(3686) mass spectrum

2018

We study the process e(+)e(-) -> p(+)p(-)psi(3686) using 5.1 fb(-1) of data collected at 16 center-of-mass energy (root s) points from 4.008 to 4.600 GeV by the BESIII detector operating at the BEPCII collider. The measured Born cross sections for e(+)e(-) -> p(+)p(-)psi(3686) are consistent with previous results, but with much improved precision. A fit to the cross section shows contributions from two structures: the first has M = 4209.5 +/- 7.4 +/- 1.4 MeV/c(2) and Gamma = 80.1 +/- 24.6 +/- 2.9 MeV, and the second has M = 4383.8 +/- 4.2 +/- 0.8 MeV/c(2) and Gamma = 84.2 +/- 12.5 +/- 2.1 MeV, where the first errors are statistical and the second systematic. The lower-mass resonance is obse…

Particle physicsPhotonMesonElectron–positron annihilationGeneral Physics and AstronomyDalitz plot01 natural sciencesResonance (particle physics)law.inventionMomentumNuclear physicslaw0103 physical sciencesPiIntermediate stateInvariant massBorn approximationNuclear Experiment010306 general physicsColliderQuantum chromodynamicsPhysicsLuminosity (scattering theory)Linear polarization010308 nuclear & particles physicsSigmaMagnetic fieldAntimatterIsospinMass spectrumHigh Energy Physics::ExperimentAtomic physicsPhysical Review D
researchProduct

Measurement of matter-antimatter differences in beauty baryon decays

2017

Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\!P$-violating asymmetries in the decay angle distributions of $\Lambda^0_b$ baryons decaying to $p\pi^-\pi^+\pi^-$ and $p\pi^-K^+K^-$ final states. These four-body hadronic decays are a promising place to search for sources of $C\!P$ violation both within and beyond the Standard Model of particle…

Physics beyond the Standard ModelHadrontransformation [parity]General Physics and Astronomy7000 GeV-cms8000 GeV-cmsviolation [CP]decay [meson]01 natural sciencesHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)antimatterscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]AntimatèriaDecays of bottom mesons Flavor symmetriesB mesonLHCb - Abteilung HintonPhysicsLarge Hadron Collider02 Physical Sciencesnew physicsCabibbo–Kobayashi–Maskawa matrixPhysicsparity: transformationParticle physicsFlavor symmetriesCharge conjugation parity time reversal and other discrete symmetrieDecays of bottom mesonsasymmetry: CPCERN LHC CollCP-VIOLATION; LAMBDA(B)meson: decayangular distribution [decay]AntimatterPhysical SciencesCP violationLHCcolliding beams [p p]Lambda/b0: hadronic decayParticle Physics - Experimentp p: scatteringParticle physicsAntimatterFluids & PlasmasPhysics MultidisciplinaryLambda/b0 --> p pi- K+ K-FOS: Physical scienceshadronic decay [Lambda/b0]Lambda/b0 --> p pi+ 2pi-CP [asymmetry]530Lambda/b0 --&gt; p pi+ 2pi-Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementNONuclear physicsPhysics and Astronomy (all)LAMBDA(B)TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesCP: violationdecay: angular distributionddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)01 Mathematical SciencesScience & Technologycharge conjugation010308 nuclear & particles physicshep-exLambda/b0 --&gt; p pi- K+ K-High Energy Physics::PhenomenologyGran Col·lisionador d'HadronsLHC-BHEPBaryonLHCbCP-VIOLATIONCKM matrixHadronic decays of baryonBottom baryons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperimentsp p: colliding beamsstatisticalexperimental results
researchProduct