Search results for "astronomy & astrophysics"

showing 10 items of 1148 documents

Extended two-body problem for rotating rigid bodies

2021

A new technique that utilizes surface integrals to find the force, torque and potential energy between two non-spherical, rigid bodies is presented. The method is relatively fast, and allows us to solve the full rigid two-body problem for pairs of spheroids and ellipsoids with 12 degrees of freedom. We demonstrate the method with two dimensionless test scenarios, one where tumbling motion develops, and one where the motion of the bodies resemble spinning tops. We also test the method on the asteroid binary (66391) 1999 KW4, where both components are modelled either as spheroids or ellipsoids. The two different shape models have negligible effects on the eccentricity and semi-major axis, but…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectFOS: Physical sciencesAngular velocityDegrees of freedom (mechanics)Two-body problem01 natural sciencesTotal angular momentum quantum number0103 physical sciencesTorqueEccentricity (behavior)010303 astronomy & astrophysicsMathematical Physics0105 earth and related environmental sciencesmedia_commonEarth and Planetary Astrophysics (astro-ph.EP)PhysicsVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430Applied MathematicsMathematical analysisAstronomy and AstrophysicsComputational Physics (physics.comp-ph)Potential energyEllipsoidComputational MathematicsSpace and Planetary ScienceModeling and SimulationPhysics - Computational PhysicsAstrophysics - Earth and Planetary AstrophysicsCelestial Mechanics and Dynamical Astronomy
researchProduct

The tougher the environment, the harder the adaptation? A psychological point of view in extreme situations

2021

IF: 2.8 (Q1); International audience; Grounded within a multidimensional and multilevel approach, the aim of this study was to investigate the time course of Psychological Adaptation Process (PAP) dimensions (social, emotional, occupational, and physical) during one-year polar winter-overs in Subantarctic and Antarctic stations. The effects of perceived control (PC) at the start of polar winter on the dynamics of the PAP dimensions were also examined. The present findings clarify some changes in PAP in extreme environments: (a) The dimensions of psychological adaptation evolved differently as a function of environmental conditions; and (b) PC influenced the trajectories of PAP dimensions. T…

020301 aerospace & aeronauticsPoint (typography)media_common.quotation_subject[SHS.PSY]Humanities and Social Sciences/PsychologyAerospace EngineeringMultilevel analysesPerceived control02 engineering and technologyExtreme environmentsPsychological dimensions01 natural sciences[SHS.PSY] Humanities and Social Sciences/Psychology0203 mechanical engineeringPsychological adaptation0103 physical sciencesTime coursePerceived controlAdaptationPsychologyAdaptation (computer science)Function (engineering)010303 astronomy & astrophysicsCognitive psychologymedia_common
researchProduct

Verification of Radiative Transfer Schemes for the EHT

2020

Authors: Gold, Roman; Broderick, Avery E.; Younsi, Ziri; Fromm, Christian M.; Gammie, Charles F.; Mościbrodzka, Monika; Pu, Hung-Yi; Bronzwaer, Thomas; Davelaar, Jordy; Dexter, Jason; Ball, David; Chan, Chi-kwan; Kawashima, Tomohisa; Mizuno, Yosuke; Ripperda, Bart; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca Baczko, Anne-Kathrin; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broguiere, Dominique; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chatterjee, Koushik; Chatterjee, Shami; Chen, Ming-T…

1388010504 meteorology & atmospheric sciencesGeodesicGeneral relativityEvent horizonAstronomyAstrophysics::High Energy Astrophysical PhenomenaKerr metric15947901 natural sciencesRelativistic disks739Relativity0103 physical sciencesRadiative transferRadiative transfer1769Radio astronomy010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesVery long baseline interferometryPhysicsEvent Horizon Telescope[PHYS]Physics [physics]Supermassive black holeEvent horizons1335Astronomy and AstrophysicsBlack hole physics1393641Computational physicsBlack holeGeneral relativitySpace and Planetary Science1338[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]High energy astrophysics
researchProduct

First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

2021

Full list of authors: Akiyama, Kazunori; Algaba, Juan Carlos; Alberdi, Antxon; Alef, Walter; Anantua, Richard; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barrett, John; Benson, Bradford A.; Bintley, Dan; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.…

1663010504 meteorology & atmospheric sciences1346KinoAstrophysics - astrophysics of galaxiesAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGalaxy accretion disks01 natural sciencesAstrophysics - high energy astrophysical phenomena2033Galaxies: individual: M87 1278 1346 1769 1663 16 2033 1859 5620103 physical sciencesPolarimetrySupermassive black holes1769010303 astronomy & astrophysicsAstronomy data modeling0105 earth and related environmental sciencesVery long baseline interferometryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleiGalaxies: individual: M871278F510ChatterjeeAstronomy and AstrophysicsCreative commons16562Low-luminosity active galactic nuclei13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Fish <Actinopterygii>Radio interferometryHumanities1859
researchProduct

The Philae lander mission and science overview.

2017

The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12–14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the…

67P/Churyumov-Gerasimenko010504 meteorology & atmospheric sciencesSoft landingGeneral MathematicsCometGeneral Physics and AstronomyScientific experimentContext (language use)01 natural scienceslaw.inventionAstrobiologyOrbiterlawLong periodRosetta0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesSpacecraftbusiness.industryGeneral EngineeringCometary ScienceArticlesPhilaeLocal environmentbusinessGeologyPhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
researchProduct

Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board Rosetta

2016

Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov¿Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness a…

67P/Churyumov-GerasimenkoBrightness010504 meteorology & atmospheric sciences530 PhysicsInfraredCometdata analysis[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]Narrow angleComets: individual: 67P/Churyumov-Gerasimenko; Methods: data analysis; Methods: numerical; Methods: observationalFOS: Physical sciencesEquinoxAstrophysics01 natural sciencesAstronomi astrofysik och kosmologiMethods: observationalMethods: data analysisindividual: 67P/Churyumov-Gerasimenko [Comets]0103 physical sciencesAstronomy Astrophysics and Cosmologyobservational [Methods]cometsdata analysis [Methods]010303 astronomy & astrophysics0105 earth and related environmental sciencesobservational method: numerical methodPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Comets: individual: 67P/Churyumov-Gerasimenkomethods: data analysis methods: numerical methods: observational comets: individual: 67P/Churyumov–Gerasimenkonumerical [Methods]biology[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Methods: numerical520 AstronomyAstronomyAstronomy and Astrophysics620 Engineeringbiology.organism_classificationOn boardSpace and Planetary Science[SDU]Sciences of the Universe [physics]Sublimation (phase transition)QB651OsirisAstrophysics - Earth and Planetary Astrophysics
researchProduct

Accretion in strong field gravity with eXTP

2019

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

ACTIVE GALACTIC NUCLEIAccretionaccretion; black holes physics; X-ray; Physics and Astronomy (all)black holes physicAstronomyAstrophysics::High Energy Astrophysical PhenomenaBlack holes physicsPolarimetryFOS: Physical sciencesBLACK-HOLE SPINGeneral Physics and AstronomyStrong fieldAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesX-rayPhysics and Astronomy (all)ELECTROMAGNETIC EMISSIONSettore FIS/05 - Astronomia e Astrofisicablack holes physicsaccretion0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)XMM-NEWTONPhysicsLENS-THIRRING PRECESSION[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]QUASI-PERIODIC OSCILLATIONS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IRON KAccretion (astrophysics)X ray[SDU]Sciences of the Universe [physics]ULTRA-FAST OUTFLOWSAstrophysics::Earth and Planetary AstrophysicsSPECTRAL FEATURESAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-RAY BINARIESScience China Physics, Mechanics &amp; Astronomy
researchProduct

Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

2020

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Open Access funding provided by Max Planck Society.--All authors: Kim, Jae-Young; Krichbaum, Thomas P.; Broderick, Avery E.; Wielgus, Maciek; Blackburn, Lindy; Gómez, José L.; Johnson, Michael D.; Bouman, Katherine L.; Chael, Andrew; Akiyama, Kazunori; Jorstad, Svetlana; Marscher, Alan P.; Issaoun, Sara; Janssen, Michael; Chan, Chi-kwan; Savolainen, Tuomas; Pesce, Dominic W.; Özel, Feryal; Alberdi, Antxon; Alef, Walt…

ACTIVE GALACTIC NUCLEIBrightnessActive galactic nucleusactive [Galaxies]Astrophysics::High Energy Astrophysical PhenomenaAstronomygalaxies: activeAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSubmillimeter ArrayFLOWSSCALE CIRCULAR-POLARIZATION0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsEvent Horizon Telescope[PHYS]Physics [physics]Jet (fluid)010308 nuclear & particles physicsAstronomy and AstrophysicsFLAREgalaxies: jetsindividual: 3C 279 [Galaxies]LONGVARIABILITYgalaxies: individual: 3C 279GAMMA-RAYQUASARS13. Climate actionSpace and Planetary Sciencetechniques: interferometricBrightness temperatureACCRETION DISKSinterferometric [Techniques]jets [Galaxies]RELATIVISTIC JETS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & astrophysics
researchProduct

On the carrier of inertia

2018

A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum's physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism shar…

ANOMALIESPhotonmedia_common.quotation_subjectvacuumUNIVERSEGeneral Physics and AstronomyCosmological constantPHOTONSInertia01 natural sciencesGravitationMomentumGeneral Relativity and Quantum CosmologyGravitational potentialElectromagnetism0103 physical sciences010306 general physics010303 astronomy & astrophysicsCOSMOLOGICAL CONSTANTmedia_commonPhysicsfotonitta114LEAST-ACTIONgravitaatioinertialiike115 Astronomy Space sciencelcsh:QC1-999UniverseTIMEmotion (physical phenomena)GALAXIESClassical mechanicsgravitationWAVEPRINCIPLECLUSTERSlcsh:PhysicsAIP Advances
researchProduct

Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

2012

The ANTARES telescope observes a full hemisphere of the sky all the time with a duty cycle close to 100%. This makes it well suited for an extensive observation of neutrinos produced in astrophysical transient sources. In the surrounding medium of blazars, i.e. active galactic nuclei with their jets pointing almost directly towards the observer, neutrinos may be produced together with gamma-rays by hadronic interactions, so a strong correlation between neutrinos and gamma-rays emissions is expected. The time variability information of the studied source can be obtained by the gamma-ray light curves measured by the LAT instrument on-board the Fermi satellite. If the expected neutrino flux ob…

ASTROPHYSICSAstrofísicaAstrophysicsNeutrino Astronomy01 natural sciences7. Clean energyLARGE-AREA TELESCOPElaw.inventionlawWATERInstrumentation010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Time-dependent searchCATALOGLIGHTNeutrino astronomyFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEINuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleus[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Point sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsfermi lat transient sources; neutrino astronomy; time-dependent search; antares; blazarsTelescopeMUONS0103 physical sciencesANTARES; Neutrino Astronomy; Fermi LAT transient sourcesBlazarANTARES010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsFermi LAT transient sourcesLight curveNeutrino astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]MODEL13. Climate actionFISICA APLICADA:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Neutrino astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]BlazarsFermi Gamma-ray Space Telescope
researchProduct