Search results for "atomic mass"
showing 10 items of 103 documents
High-accuracy mass determination of unstable cesium and barium isotopes
1999
Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\delta \mbox{m} \approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.
Measurement of the Higgs boson mass from theH→γγandH→ZZ*→4ℓchannels inppcollisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector
2014
An improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H -> gamma gamma and H -> ZZ* -> 4l. The analysis uses the pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at center-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 25 fb(-1). The measured value of the Higgs boson mass is m(H) = 125.36 +/- 0.37(stat) +/- 0.18 (syst) GeV. This result is based on improved energy-scale calibrations for photons, electrons, and muons as well as other analysis improvements, and supersedes the previous result from ATLAS. Upper limits on t…
Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28 , N = 40
2007
The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron-rich 70-73Ni and 73, 75Cu isotopes with a typical accuracy less than 5keV. The mass of 73Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at 68 28Ni40 . A well established proton shell gap is observed at Z = 28 .
Direct mass measurements of the heaviest elements with Penning traps
2013
Abstract Penning-trap mass spectrometry (PTMS) is a mature technique to provide atomic masses with highest precision. Applied to radionuclides it enables us to investigate their nuclear structure via binding energies and derived quantities such as nucleon separation energies. Recent progress in slowing down radioactive ion beams in buffer gas cells in combination with advanced ion-manipulation techniques has opened the door to access even the elements above fermium by PTMS. Such elements are produced in complete fusion–evaporation reactions of heavy ions with lead, bismuth, and actinide targets at very low rates. Pioneering high-precision mass measurements of nobelium and lawrencium isotope…
ISOLTRAP mass measurements of exotic nuclides at
2005
The ISOLTRAP experiment at the ISOLDE facility at CERN is a Penning trap mass spectrometer for on-line mass measurements on short-lived radionuclides. It allows the determination of atomic masses of exotic nuclides with a relative uncertainty of only 10−8. The results provide important information for, e.g., weak interaction studies and nuclear models. Recent ISOLTRAP investigations and applications of high-precision mass measurements are discussed.
α-decay properties ofPb181
1996
The isotope {sup 181}Pb was produced in {sup 92}Mo bombardments of {sup 90}Zr and, together with other reaction products, was passed through a recoil mass separator and implanted in a double-sided silicon strip detector for {alpha}-particle assay. The half-life and energy of the main {sup 181}Pb {alpha} transition were determined to be 45 (20) ms and 7065 (20) keV, respectively. This {sup 181}Pb {ital E}{sub {alpha}} agrees with one previously measured value [7044 (15) keV], but not with the one [7211 (10) keV] used as input to the 1993 Atomic Mass Evaluation. The 6180-keV {alpha} transition assigned to {sup 181}Tl by Bolshakov {ital et} {ital al}. was observed, but the 6566-keV {alpha} par…
Direct mass measurement of N $\sim$ Z nuclei with A = 64–80 using the CSS2 cyclotron
2005
International audience; The masses of ten neutron-deficient nuclides near the N = Z line with A = 64–80 have been measured with the direct time-of-flight technique using the CSS2 cyclotron as a high-resolution spectrometer. All measured masses agree with the 2003 atomic mass evaluation and are compared to the predictions of the finite range droplet model. The atomic mass excesses obtained for $^{68}$Se and $^{80}$Y are -53.958(246) MeV and -60.971(180) MeV, respectively. The new results for $^{68}$Se and $^(80}$Y are compared to other recent experimental values.
Extension of Penning-trap mass measurements to very short-lived nuclides
2000
Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.
Direct mass measurements ofSe68andY80
2008
The masses of neutron-deficient nuclides near the $N=Z$ line with $A=64\text{\ensuremath{-}}80$ have been determined using a direct time-of-flight technique which employed a cyclotron as a high-resolution spectrometer. The measured atomic masses for $^{68}\mathrm{Se}$ and $^{80}\mathrm{Y}$ were 67.9421(3) u and 79.9344(2) u, respectively. The new values agree with the 2003 Atomic Mass Evaluation. The result for $^{68}\mathrm{Se}$ confirms that this nucleus is a waiting point of the rp-process, and that for $^{80}\mathrm{Y}$ resolves the conflict between earlier measurements. Using the present results and the 2003 Atomic Mass Evaluation compilation, the empirical interaction between the last…
Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer
2000
Abstract The masses of Xe isotopes with 124⩾ A ⩾114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm ≈12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found.