Search results for "autoregressive model"

showing 10 items of 120 documents

Information Dynamics Analysis: A new approach based on Sparse Identification of Linear Parametric Models*

2020

The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification …

Multivariate statisticsComputer scienceEntropyGaussian0206 medical engineeringNormal Distribution02 engineering and technology01 natural sciencesLASSO regression010305 fluids & plasmassymbols.namesakeinformation TransferState Space modelsGranger causalityLasso (statistics)0103 physical sciencesStatistics::MethodologyState spaceLeast-Squares AnalysisShrinkageSparse matrixElectroencephalography020601 biomedical engineeringinformation Transfer; LASSO regression; State Space models; Granger causalityAutoregressive modelstate space modelParametric modelOrdinary least squaresLinear ModelssymbolsGranger causalityTransfer entropyAlgorithmInformation dyancamic analysi
researchProduct

Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis

2011

This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain measures of coupling (coherence, partial coherence) and causality (directed coherence, partial directed coherence) from the parametric representation of linear multivariate (MV) processes. After providing a comprehensive time-domain definition of the various forms of connectivity observed in MV processes, we particularize them to MV autoregressive (MVAR) processes and derive the corresponding frequency-domain measures. Then, we discuss the theoretical interpretation of these MVAR-based connectivity measures, showing that each of them reflects a specific time-domain connectivity definition an…

Multivariate statisticsInformation transferTime FactorsArticle SubjectImmunology and Microbiology (all)Computer scienceBiostatisticslcsh:Computer applications to medicine. Medical informaticsGeneral Biochemistry Genetics and Molecular BiologyCausality (physics)HumansRepresentation (mathematics)Parametric statisticsBiochemistry Genetics and Molecular Biology (all)General Immunology and MicrobiologyMedicine (all)Applied MathematicsMedicine (all); Modeling and Simulation; Immunology and Microbiology (all); Biochemistry Genetics and Molecular Biology (all); Applied MathematicsElectroencephalographySignal Processing Computer-AssistedGeneral MedicineCoherence (statistics)Nonlinear DynamicsAutoregressive modelModeling and SimulationFrequency domainSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaMultivariate AnalysisLinear Modelslcsh:R858-859.7AlgorithmResearch ArticleComputational and Mathematical Methods in Medicine
researchProduct

Directed coherence analysis in patients with severe autonomic dysfunction

2014

Many different approaches have been applied to analyse the coupling between cardiovascular signals. This study evaluated the use of directed coherence, based on multivariate autoregressive modelling, for analysis of cardiovascular signals in patients with transthyretin amyloidosis, a rare disease where severe autonomic dysfunction is common. © 2014 IEEE.

Multivariate statisticsPathologymedicine.medical_specialtyPhysical medicine and rehabilitationAutoregressive modelbusiness.industrySettore ING-INF/06 - Bioingegneria Elettronica E InformaticaBiomedical EngineeringmedicineCoherence (signal processing)In patientbusinessCoherence analysis2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)
researchProduct

Multivariate and Multiscale Complexity of Long-Range Correlated Cardiovascular and Respiratory Variability Series

2020

Assessing the dynamical complexity of biological time series represents an important topic with potential applications ranging from the characterization of physiological states and pathological conditions to the calculation of diagnostic parameters. In particular, cardiovascular time series exhibit a variability produced by different physiological control mechanisms coupled with each other, which take into account several variables and operate across multiple time scales that result in the coexistence of short term dynamics and long-range correlations. The most widely employed technique to evaluate the dynamical complexity of a time series at different time scales, the so-called multiscale …

Multivariate statisticsSystolic arterial pressure (SAP)Vector autoregressive fractionally integrated (VARFI) modelsComputer scienceGeneral Physics and Astronomylcsh:Astrophysics01 natural sciencesArticle010305 fluids & plasmaslcsh:QB460-4660103 physical sciencesRange (statistics)Multi-scale entropy (MSE)lcsh:Science010306 general physicsRepresentation (mathematics)Parametric statisticsvector autoregressive fractionally integrated (VARFI) modelSeries (mathematics)multi-scale entropy (MSE)Stochastic processsystolic arterial pressure (SAP)lcsh:QC1-999Term (time)Autoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E Informaticavector autoregressive fractionally integrated (VARFI) modelslcsh:QBiological systemHeart rate variability (HRV)lcsh:Physicsheart rate variability (HRV)
researchProduct

Measuring frequency domain granger causality for multiple blocks of interacting time series

2011

In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing meas…

Multivariate statisticsTime FactorsGeneral Computer ScienceLogarithmScalar (mathematics)Complex systemTopologyModels BiologicalNeurophysiological time serieBlock-based connectivity analysiGranger causalityStatisticsHumansComputer SimulationDirected coherenceMathematicsNumerical analysisPartial directed coherenceBrainElectroencephalographyVector autoregressive (VAR) modelBrain WavesCausalityAutoregressive modelFrequency domainComputer ScienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityAlgorithmsBiotechnologyBiological Cybernetics
researchProduct

Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

2010

The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. M…

Multivariate statisticsTime FactorsGeneral Computer ScienceModels NeurologicalPattern Recognition AutomatedCardiovascular Physiological PhenomenaElectrocardiographyGranger causalityArtificial IntelligenceEconometricsCoherence (signal processing)AnimalsHumansComputer SimulationEEGPartial Directed CoherenceMathematicsCausal modelMultivariate autoregressive modelComputer Science (all)Linear modelElectroencephalographySignal Processing Computer-AssistedCardiovascular variabilityAutoregressive modelFrequency domainParametric modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityMultivariate time serieLinear ModelsNeural Networks ComputerBiotechnologyBiological cybernetics
researchProduct

Estimating brain connectivity when few data points are available: Perspectives and limitations

2017

Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in …

Multivariate statisticsUnderdetermined system0206 medical engineeringBiomedical EngineeringSignal Processing; Biomedical Engineering; 1707; Health InformaticsHealth Informatics02 engineering and technologyMachine learningcomputer.software_genreBrain Mapping Brain03 medical and health sciences0302 clinical medicineFalse positive paradox1707MathematicsBrain Mappingbusiness.industryBrain020601 biomedical engineeringRegressionData pointAutoregressive modelMulticollinearitySignal ProcessingSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaOrdinary least squaresArtificial intelligenceData miningbusinesscomputer030217 neurology & neurosurgery2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
researchProduct

Pre- and post-ictal brain activity characterization using combined source decomposition and connectivity estimation in epileptic children

2019

In this research, the study of functional connectivity between sources of electroencephalogram (EEG) activity assessed for different classes (well before seizure, preictal and post-ictal) was performed. EEG recordings were acquired from 12 subjects with focal epilepsy. Then, ten common spatial patterns (CSP) were obtained for EEG segments describing 95% of Riemannian distance between pairs of classes, followed by estimation of multivariate autoregressive (MVAR) models’ coefficients. The MVAR models were further used to extract coherence as a functional connectivity measures. Our results show that the coherence between CSP sources differs between baseline and pre-ictal segments: it has the l…

Multivariate statisticsepilepsy epileptic seizures EEG brain connectivity common spatial patterns VAR model ICAmedicine.diagnostic_testComputer sciencebusiness.industryBrain activity and meditationPattern recognitionCoherence (statistics)Electroencephalographymedicine.diseaseSettore ING-INF/01 - ElettronicaEpilepsyAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticamedicineIctalArtificial intelligencebusinessPre and post
researchProduct

Testing different methodologies for Granger causality estimation: A simulation study

2021

Granger causality (GC) is a method for determining whether and how two time series exert causal influences one over the other. As it is easy to implement through vector autoregressive (VAR) models and can be generalized to the multivariate case, GC has spread in many different areas of research such as neuroscience and network physiology. In its basic formulation, the computation of GC involves two different regressions, taking respectively into account the whole past history of the investigated multivariate time series (full model) and the past of all time series except the putatively causal time series (restricted model). However, the restricted model cannot be represented through a finit…

Multivariate statisticsstate space modelsSeries (mathematics)Computer scienceGranger causality; state space modelsDynamical NetworksMultivariate Time SeriesReduction (complexity)Autoregressive modelGranger causalitySettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityState spaceConditioningTime seriesVector Autoregressive ProcessesAlgorithm2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct

Vector Autoregressive Fractionally Integrated Models to Assess Multiscale Complexity in Cardiovascular and Respiratory Time Series

2020

Cardiovascular variability is the result of the activity of several physiological control mechanisms, which involve different variables and operate across multiple time scales encompassing short term dynamics and long range correlations. This study presents a new approach to assess the multiscale complexity of multivariate time series, based on linear parametric models incorporating autoregressive coefficients and fractional integration. The approach extends to the multivariate case recent works introducing a linear parametric representation of multiscale entropy, and is exploited to assess the complexity of cardiovascular and respiratory time series in healthy subjects studied during postu…

Multivariate statisticsvector autoregressive fractionally integrated (VARFI) modelComputer scienceQuantitative Biology::Tissues and OrgansPhysics::Medical Physicssystolic arterial pressure (SAP)Cardiovascular variabilitycomputer.software_genreCorrelationAutoregressive modelmultiscale entropy (MSE)heart period (HP)Settore ING-INF/06 - Bioingegneria Elettronica E InformaticaParametric modelMultiple timeEntropy (information theory)Data miningTime seriescomputerParametric statistics2020 11th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)
researchProduct