Search results for "azulene"

showing 10 items of 21 documents

CCDC 1029369: Experimental Crystal Structure Determination

2015

Related Article: Adrian E. Ion, Simona Nica, Augustin M. Madalan, Sergiu Shova, Julia Vallejo, Miguel Julve, Francesc Lloret, Marius Andruh|2015|Inorg.Chem.|54|16|doi:10.1021/ic5025197

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu2-44'-Azulene-13-diyldipyridine)-bis(mu2-44'-bipyridine)-bis(NN-dimethylformamide)-tetrakis(isothiocyanato)-di-cobalt methanol solvate dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 1029370: Experimental Crystal Structure Determination

2015

Related Article: Adrian E. Ion, Simona Nica, Augustin M. Madalan, Sergiu Shova, Julia Vallejo, Miguel Julve, Francesc Lloret, Marius Andruh|2015|Inorg.Chem.|54|16|doi:10.1021/ic5025197

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu2-44'-Azulene-13-diyldipyridine)-bis(mu2-44'-ethene-12-diyldipyridine)-bis(NN-dimethylformamide)-tetrakis(isothiocyanato)-di-cobalt hydrate]Experimental 3D Coordinates
researchProduct

CCDC 949947: Experimental Crystal Structure Determination

2013

Related Article: Adrian E. Ion, Simona Nica, Augustin M. Madalan, Catalin Maxim, Miguel Julve, Francesc Lloret, Marius Andruh|2014|CrystEngComm|16|319|doi:10.1039/C3CE41592A

Space GroupCrystallographycatena-[(mu~2~- 44'-Azulene-13-diyldipyridine)-(22'-(propane-13-diylbis(nitrilomethylylidene))bis(6-methoxyphenolato))-tris(nitrato)-gadolinium-nickel acetonitrile solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910383: Experimental Crystal Structure Determination

2013

Related Article: Y.Inokuma,S.Yoshioka,J.Ariyoshi,T.Arai,Y.Hitora,K.Takada,S.Matsunaga,K.Rissanen,M.Fujita|2013|Nature (London)|495|461|doi:10.1038/nature11990

Space GroupCrystallographycatena-[bis(bis(mu~3~-246-tris(Pyridin-4-yl)-135-triazine)-hexakis(iodo)-tri-zinc(ii)) 7-isopropyl-14-dimethylazulene clathrate unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910382: Experimental Crystal Structure Determination

2013

Related Article: Y.Inokuma,S.Yoshioka,J.Ariyoshi,T.Arai,Y.Hitora,K.Takada,S.Matsunaga,K.Rissanen,M.Fujita|2013|Nature (London)|495|461|doi:10.1038/nature11990

Space GroupCrystallographycatena-[bis(mu3-246-tris(Pyridin-4-yl)-135-triazine)-hexakis(iodo)-tri-zinc(ii) 7-isopropyl-14-dimethylazulene clathrate unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Chamazulene-Rich Artemisia arborescens Essential Oils Affect the Cell Growth of Human Melanoma Cells

2020

Artemisia arborescens is an aromatic shrub whose essential oils are considered a potential source of molecules with industrial and pharmaceutical interest. The chemical profile of A. arborescens essential oils (EOs) was shown to be quite variable and various chemotypes have been identified. In this study, we compared the EOs composition of A. arborescens leaves and flowers collected from four different locations in Sicily. The EOs were assayed for their antiproliferative activity against A375 human malignant melanoma cells, also testing cell viability and cell membrane integrity. The evaluation of DNA fragmentation and caspase-3 activity assay was employed for the detection of apoptosis. Th…

antiproliferative activitymelanoma cancer cellArtemisia arborescensPlant ScienceArticleessential oillaw.inventionSuperoxide dismutase03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemelanoma cancer cellslawcamphor<i>Artemisia arborescens</i>Viability assayEcology Evolution Behavior and SystematicsEssential oil030304 developmental biology0303 health sciencesEcologybiologyChemistryCell growthChamazuleneBotanychamazuleneArtemisia arborescensbiology.organism_classificationBiochemistryApoptosis030220 oncology & carcinogenesisQK1-989Artemisia arborescenbiology.proteinDNA fragmentationPlants
researchProduct

Proton‐Gated Ring‐Closure of a Negative Photochromic Azulene‐Based Diarylethene

2020

Abstract Proton‐responsive photochromic molecules are attractive for their ability to react on non‐invasive rapid optical stimuli and the importance of protonation/deprotonation processes in various fields. Conventionally, their acidic/basic sites are on hetero‐atoms, which are orthogonal to the photo‐active π‐center. Here, we incorporate azulene, an acid‐sensitive pure hydrocarbon, into the skeleton of a diarylethene‐type photoswitch. The latter exhibits a novel proton‐gated negative photochromic ring‐closure and its optical response upon protonation in both open and closed forms is much more pronounced than those of diarylethene photoswitches with hetero‐atom based acidic/basic moieties. …

azulenenegative photochromismProtonation010402 general chemistryPhotochemistry01 natural sciencesCatalysischemistry.chemical_compoundPhotochromismDeprotonationDiaryletheneMoleculeMolecular switchphotochemistryPhotoswitch010405 organic chemistryCommunicationPhotoswitchesGeneral ChemistryAzuleneCommunications3. Good health0104 chemical sciences540 Chemie und zugeordnete Wissenschaftenchemistryacid-base equilibriaddc:540diarylethene
researchProduct

Two-Dimensional Coordination Polymers Constructed Using, Simultaneously, Linear and Angular Spacers and Cobalt(II) Nodes. New Examples of Networks of…

2014

Two novel bidimensional coordination polymers, [Co(azbbpy)(4,4'-bipy)0.5(DMF)(NCS)2]·MeOH (1) and [Co(azbbpy)(bpe)0.5(DMF)(NCS)2]·0.25H2O (2), resulted from the assembling of cobalt(II) ions by 1,3-bis(4-pyridyl)azulene, using either 4,4'-bipyridyl or 1,2-bis(4-pyridyl)ethylene as neutral spacers. The cobalt(II) nodes in 1 and 2 act as single-ion magnets (SIMs).

chemistry.chemical_classificationEthyleneSingle ionchemistry.chemical_elementPolymerAzuleneIonInorganic Chemistrychemistry.chemical_compoundchemistryMagnetOrganic chemistryPhysical chemistryPhysical and Theoretical ChemistryCobaltInorganic Chemistry
researchProduct

One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyri…

2014

Four new heterometallic 3d–4f complexes have been obtained using bi- and trinuclear building blocks: 1∞[Ni(L1)Gd(NO3)3(azbbpy)]·CH3CN (1), [Zn(L1)Eu(NO3)3(azbbpy)]·H2O (2), 1∞[(CuL2)2Gd(NO3)2(dca)] 3 and 1∞[(NiL2)2Dy(H2O)4(oxy-bbz)]NO3·3H2O (4), [H2L1 = 1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol), H2L2 = 2,6-di(acetoacetyl)pyridine, azbbpy = 1,3-bis(4-pyridyl)azulene, dca− = dicyanamide anion, and oxy-bbz = the dianion of the 4,4′-oxy-bis(benzoic) acid]. 1 and 2 represent the first complexes containing 1,3-bis(4-pyridyl)azulene as a ligand. 1, 3, and 4 are one-dimensional coordination polymers constructed from heterometallic nodes connected by the exo-dentate ligands. Helical chai…

chemistry.chemical_classificationLigandStereochemistryStackingSupramolecular chemistryGeneral ChemistryPolymerAzuleneCondensed Matter PhysicsCrystal engineeringchemistry.chemical_compoundCrystallographychemistryPyridineGeneral Materials ScienceDicyanamideCrystEngComm
researchProduct

Sesquiterpene lactones and lignans from Artemisia arborescens

1997

The aerial parts of Artemisia arborescens yielded, in addition to several known compounds, a new guaianolide, a new homoditerpene endoperoxide, a new lignan of the sesamin type and a new azulene derivative.

chemistry.chemical_classificationLignanbiologyStereochemistryPlant ScienceGeneral MedicineHorticultureAzuleneArtemisia arborescensbiology.organism_classificationSesquiterpeneBiochemistrychemistry.chemical_compoundchemistrySesaminDiterpeneMolecular BiologyLactonePhytochemistry
researchProduct