Search results for "bacterial protein"

showing 10 items of 616 documents

Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gra…

1998

Streptolysin O (SLO) is a bacterial exotoxin that binds to cell membranes containing cholesterol and then oligomerizes to form large pores. Along with rings, arc-shaped oligomers form on membranes. It has been suggested that each arc represents an incompletely assembled oligomer and constitutes a functional pore, faced on the opposite side by a free edge of the lipid membrane. We sought functional evidence in support of this idea by using an oligomerization-deficient, non-lytic mutant of SLO. This protein, which was created by chemical modification of a single mutant cysteine (T250C) with N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic acid, formed hybrid oligomers with active SLO on memb…

Cell Membrane PermeabilityProtein ConformationMembrane lipidsBiologyCholesterol-dependent cytolysinComplement Hemolytic Activity AssayOligomerGeneral Biochemistry Genetics and Molecular BiologyMembrane Lipidschemistry.chemical_compoundBacterial ProteinsNaphthalenesulfonatesAnimalsProtein oligomerizationCysteineLipid bilayerMolecular BiologyGeneral Immunology and MicrobiologyGeneral NeuroscienceErythrocyte MembraneCalceinMembranechemistryBiochemistryMutationStreptolysinsBiophysicsStreptolysinRabbitsResearch ArticleThe EMBO Journal
researchProduct

Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric …

2003

AbstractMembrane cholesterol is essential to the activity of at least two structurally unrelated families of bacterial pore-forming toxins, represented by streptolysin O (SLO) and Vibrio cholerae cytolysin (VCC), respectively. Here, we report that SLO and VCC differ sharply in their interaction with liposome membranes containing enantiomeric cholesterol (ent-cholesterol). VCC had very low activity with ent-cholesterol, which is in line with a stereospecific mode of interaction of this toxin with cholesterol. In contrast, SLO was only slightly less active with ent-cholesterol than with cholesterol, suggesting a rather limited degree of structural specificity in the toxin–cholesterol interact…

Cell Membrane Permeabilitygenetic structuresBiophysicsBiologymedicine.disease_causeBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsStructural Biologyotorhinolaryngologic diseasesGeneticsmedicineStreptolysin OMolecular BiologyVibrio cholerae030304 developmental biology0303 health sciencesLiposomeVibrio cholerae cytolysinCholesterolToxinCytotoxinsEnantiomeric cholesterol030302 biochemistry & molecular biologyMembranes ArtificialStereoisomerismCell BiologyFluoresceinseye diseasesRecombinant ProteinsCholesterol-binding cytolysinsMembraneCholesterolchemistryBiochemistryVibrio choleraeLiposomesStreptolysinsProtein–cholesterol interactionlipids (amino acids peptides and proteins)Streptolysinsense organsCytolysinEnantiomerProtein BindingFEBS letters
researchProduct

Soluble N-ethylmaleimide-sensitive-factor attachment protein and N-ethylmaleimide-insensitive factors are required for Ca2+-stimulated exocytosis of …

1996

Ca2+ stimulates exocytosis in permeabilized insulin-secreting cells. To investigate the putative cytosolic components involved in the Ca2+ response, HIT-T15 cells (a pancreatic B-cell line) were permeabilized with streptolysin-O, a procedure that allows rapid exchange of soluble components including macromolecules. We found that in this cell preparation the secretory response to Ca2+ but not to guanosine 5'-[gamma-thio]triphosphate was lost as a function of time and could be restored by rat brain cytosol in a concentration-dependent manner. Reconstitutive activity of rat brain cytosol was found in a high-molecular-mass heat-labile partially N-ethylmaleimide(NEM)-sensitive fraction. The NEM-…

Cell Membrane Permeabilitymedicine.medical_treatmentBlotting WesternVesicular Transport ProteinsGuanosineBiologyBiochemistryExocytosisExocytosislaw.inventionCell Linechemistry.chemical_compoundIslets of LangerhansCytosolBacterial ProteinslawInsulin SecretionmedicineAnimalsInsulinheterocyclic compoundsAttachment proteinMolecular BiologyN-Ethylmaleimide-Sensitive ProteinsBrain ChemistryInsulinN-EthylmaleimideMembrane ProteinsCell BiologyRecombinant ProteinsCell biologyRatsSoluble N-Ethylmaleimide-Sensitive Factor Attachment ProteinsCytosolchemistryEthylmaleimideGuanosine 5'-O-(3-Thiotriphosphate)StreptolysinsRecombinant DNACalciumSoluble NSF attachment proteinCarrier ProteinsResearch ArticleThe Biochemical journal
researchProduct

Induction of programmed cell death in human retinoblastoma Y79 cells by C2-ceramide.

1998

C2-ceramide, a cell-permeable analogue of ceramide, induced significant, dose- and time-dependent death in human retinoblastoma Y79 cells. Dying cells strongly displayed the morphology of apoptosis as characterized by microscopic evidence of cell shrinkage, membrane blebbing, nuclear and chromatin condensation and degeneration of the nucleus into membrane-bound apoptotic bodies. Upon induction of apoptosis Y79 cells evidence early phosphatidylserine externalization, as shown by annexin V-FITC. Apoptosis was also assessed by monitoring changes in cell granularity by staining with the combined fluorescent dyes acridine orange and ethidium bromide. C2-ceramide induced these morphological chang…

Cell SurvivalBlotting WesternRetinoblastomaProteinsApoptosisDNA FragmentationCeramidesC2-ceramideNucleosomesSphingomyelin PhosphodiesteraseBacterial ProteinsProto-Oncogene Proteins c-bcl-2SphingosineOkadaic AcidTumor Cells CulturedHumansTumor Suppressor Protein p53Interleukin-1Molecular and cellular biochemistry
researchProduct

Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered

2022

ABSTRACT Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particul…

Cell signalingved/biology.organism_classification_rank.speciesStreptomyces coelicolormembrane vesiclesApplied Microbiology and BiotechnologyStreptomycesantibioticsproteomicsBacterial Proteinsproteomics.actinomycetesExtracellularModel organismEcologybiologyelectron microscopyved/biologyChemistryVesicleStreptomyces coelicolorProteinsExtracellular vesiclebiology.organism_classificationmetabolomicsStreptomycesAnti-Bacterial AgentsBiochemistryBiogenesisFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Analysis of Drosophila salivary gland, epidermis and CNS development suggests an additional function of brinker in anterior-posterior cell fate speci…

2000

Salivary glands are simple structured organs which can serve as a model system in the study of organogenesis. Following a large EMS mutagenesis we have identified a number of genes required for normal salivary gland development. Mutations in the locus small salivary glands-1 (ssg-1) lead to a drastic reduction in the size of the salivary glands. The gene ssg-1 was cloned and subsequent sequence and genetic analysis showed identity to the recently published gene brinker. The salivary gland placode in brinker mutants appears reduced along both the anterior-posterior and dorso-ventral axis. Analysis of the brinker cuticle phenotype revealed a similar loss of anterior-posterior as well as later…

Central Nervous SystemEmbryologyReceptors SteroidEmbryo NonmammalianMutantLocus (genetics)OrganogenesisBiologyCell fate determinationSalivary GlandsNeuroblastBacterial ProteinsmedicineAnimalsDrosophila ProteinsAdhesins BacterialGeneBody PatterningEmbryonic InductionHomeodomain ProteinsSalivary glandGenetic Complementation TestNeuropeptidesChromosome MappingGene Expression Regulation DevelopmentalCell DifferentiationAnatomyPhenotypeCell biologyRepressor Proteinsmedicine.anatomical_structureEpidermal CellsMutationInsect ProteinsDrosophilaEpidermisDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

CtsR is the master regulator of stress response gene expression in Oenococcus oeni.

2005

ABSTRACT Although many stress response genes have been characterized in Oenococcus oeni , little is known about the regulation of stress response in this malolactic bacterium. The expression of eubacterial stress genes is controlled both positively and negatively at the transcriptional level. Overall, negative regulation of heat shock genes appears to be more widespread among gram-positive bacteria. We recently identified an ortholog of the ctsR gene in O. oeni . In Bacillus subtilis , CtsR negatively regulates expression of the clp genes, which belong to the class III family of heat shock genes. The ctsR gene of O. oeni is cotranscribed with the downstream clpC gene. Sequence analysis of t…

ChaperoninsOperonMolecular Sequence DataBiologyMicrobiologyGenome03 medical and health sciencesBacterial ProteinsSigma factorHeat shock proteinOperon[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyGene RegulationPromoter Regions GeneticMolecular BiologyGeneHeat-Shock Proteins030304 developmental biologyRegulator geneOenococcus oeniGeneticsRegulation of gene expressionAdenosine Triphosphatases0303 health sciencesBase Sequence030306 microbiologyCTSRGene Expression Regulation Bacterialbiology.organism_classificationDNA-Binding ProteinsGram-Positive CocciRepressor ProteinsMutagenesis Site-DirectedOenococcus oeniGenome BacterialHeat-Shock ResponseBacillus subtilisMolecular ChaperonesJournal of bacteriology
researchProduct

A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.

2006

We report pH-dependent electrochemical rectification in a protein ion channel (the bacterial porin OmpF) reconstituted on a planar phospholipid membrane. The measurements performed at single-channel level show that the electric current is controlled by the protein fixed charge and it can be tuned by adjusting the local pH. Under highly asymmetric pH conditions, the channel behaves like a liquid diode. Unlike other nanofluidic devices that display also asymmetric conductance, here the microscopic charge distribution of the system can be explored by using the available high-resolution (2.4 A) channel crystallographic structure. Continuum electrostatics calculations confirm the hypothesized bi…

ChemistryStatic ElectricityAnalytical chemistryConductanceCharge densityPorinsHydrogen-Ion ConcentrationCrystallography X-RayIon ChannelsSurfaces Coatings and FilmsMembraneRectificationBacterial ProteinsBiomimeticsStatic electricityMaterials ChemistryElectrochemistryNanotechnologyPhysical and Theoretical ChemistryElectric currentIon channelDiodeThe journal of physical chemistry. B
researchProduct

IM30 triggers membrane fusion in cyanobacteria and chloroplasts

2015

The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg2+, membr…

ChloroplastsGeneral Physics and AstronomyBiologyMembrane FusionThylakoidsGeneral Biochemistry Genetics and Molecular BiologyBacterial ProteinsCentrifugation Density GradientIntegral membrane proteinMultidisciplinaryGalactolipidsPeripheral membrane proteinSynechocystisLipid bilayer fusionfood and beveragesPhosphatidylglycerolsGeneral ChemistryTransmembrane proteinCell biologyChloroplastMembraneThylakoidLiposomesQuantasomeGlycolipidsProtein BindingNature Communications
researchProduct

Coupling of Cholesterol and Cone-shaped Lipids in Bilayers Augments Membrane Permeabilization by the Cholesterol-specific Toxins Streptolysin O and V…

2001

Abstract Vibrio cholerae cytolysin (VCC) forms oligomeric pores in lipid bilayers containing cholesterol. Membrane permeabilization is inefficient if the sterol is embedded within bilayers prepared from phosphatidylcholine only but is greatly enhanced if the target membrane also contains ceramide. Although the enhancement of VCC action is stereospecific with respect to cholesterol, we show here that no such specificity applies to the two stereocenters in ceramide; all four stereoisomers of ceramide enhanced VCC activity in cholesterol-containing bilayers. A wide variety of ceramide analogs were as effective asd-erythro-ceramide, as was diacylglycerol, suggesting that the effect of ceramide …

Cholera ToxinCeramideCell Membrane PermeabilityLipid BilayersBiologyCeramidesBiochemistrychemistry.chemical_compoundBacterial ProteinsPhosphatidylcholineLipid bilayerNuclear Magnetic Resonance BiomolecularVibrio choleraeMolecular BiologyDiacylglycerol kinaseCytotoxinsCell BiologyLipid MetabolismLipidsSphingolipidSterolCholesterolchemistryBiochemistryStreptolysinslipids (amino acids peptides and proteins)StreptolysinCytolysinJournal of Biological Chemistry
researchProduct