Search results for "banach"

showing 10 items of 326 documents

The Ptolemy and Zbăganu constants of normed spaces

2010

Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…

CombinatoricsInner product spaceApplied MathematicsProduct (mathematics)Mathematical analysisBanach spaceFixed-point theoremSpace (mathematics)Constant (mathematics)Fixed-point propertyAnalysisNormed vector spaceMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Dissipative operators and differential equations on Banach spaces

1991

If we consider the initial value problem Inline Equation $$x'(t) = f(t,x(t)),{\text{ }}x(0) = {x_0}$$ on the real line, it is well known that one—sided bounds like Inline Equation $$\left[ {f(t,x) - f\left( {t,y} \right)} \right]\left( {x - {\text{y}}} \right) \leqslant \omega {\left( {x - y} \right)^2}$$ give much better information about the behaviour of solutions than the Lipschitz- type estimates Inline Equation $$ \left| {f\left( {t,x} \right) - f\left( {t,y} \right)} \right| \leqslant L\left| {x - y} \right|,$$ because ω, unlike L, may be negative.

CombinatoricsPhysicsFunctional analysisNuclear operatorBanach spaceDissipative operatorType (model theory)Operator theoryLp spaceC0-semigroup
researchProduct

Some Aspects of Vector-Valued Singular Integrals

2009

Let A, B be Banach spaces and \(1 < p < \infty. \; T\) is said to be a (p, A, B)- CalderoLon–Zygmund type operator if it is of weak type (p, p), and there exist a Banach space E, a bounded bilinear map \(u: E \times A \rightarrow B,\) and a locally integrable function k from \(\mathbb{R}^n \times \mathbb{R}^n \backslash \{(x, x): x \in \mathbb{R}^n\}\) into E such that $$T\;f(x) = \int u(k(x, y), f(y))dy$$ for every A-valued simple function f and \(x \notin \; supp \; f.\)

CombinatoricsPhysicsMathematics::Functional Analysissymbols.namesakeBounded functionBanach spacesymbolsLocally integrable functionFunction (mathematics)Type (model theory)Hardy spaceSingular integralWeak type
researchProduct

The Bourgain property and convex hulls

2007

Let (Ω, Σ, μ) be a complete probability space and let X be a Banach space. We consider the following problem: Given a function f: Ω X for which there is a norming set B ⊂ BX * such that Zf,B = {x * ○ f: x * ∈ B } is uniformly integrable and has the Bourgain property, does it follow that f is Birkhoff integrable? It turns out that this question is equivalent to the following one: Given a pointwise bounded family ℋ ⊂ ℝΩ with the Bourgain property, does its convex hull co(ℋ) have the Bourgain property? With the help of an example of D. H. Fremlin, we make clear that both questions have negative answer in general. We prove that a function f: Ω X is scalarly measurable provided that there is a n…

CombinatoricsPointwiseDiscrete mathematicsConvex hullGeneral MathematicsBounded functionRegular polygonBanach spaceContinuum (set theory)Function (mathematics)Separable spaceMathematicsMathematische Nachrichten
researchProduct

Type and Cotype in Vector-Valued Nakano Sequence Spaces

2001

AbstractGiven a sequence of Banach spaces {Xn}n and a sequence of real numbers {pn}n in [1,∞), the vector-valued Nakano sequence spaces ℓ({pn},{Xn}) consist of elements {xn}n in ∏nXn for which there is a constant λ>0 such that ∑n(‖xn‖/λ)pn<∞. In this paper we find the conditions on the Banach spaces Xn and on the sequence {pn}n for the spaces ℓ({pn},{Xn}) to have cotype q or type p.

CombinatoricsSequenceApplied MathematicsMathematical analysiscotypeBanach spaceType (model theory)typeConstant (mathematics)Analysisnakano sequence spaceReal numberMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Complete weights andv-peak points of spaces of weighted holomorphic functions

2006

We examine the geometric theory of the weighted spaces of holomorphic functions on bounded open subsets ofC n ,C n ,H v (U) and\(H_{v_o } (U)\), by finding a lower bound for the set of weak*-exposed and weak*-strongly exposed points of the unit ball of\(H_{v_o } (U)'\) and give necessary and sufficient conditions for this set to be naturally homeomorphic toU. We apply these results to examine smoothness and strict convexity of\(H_{v_o } (U)\) and\(H_v (U)\). We also investigate whether\(H_{v_o } (U)\) is a dual space.

CombinatoricsUnit sphereDiscrete mathematicsGeometric group theoryDual spaceGeneral MathematicsBounded functionHolomorphic functionBanach spaceUpper and lower boundsConvexityMathematicsIsrael Journal of Mathematics
researchProduct

Fréchet Spaces of Holomorphic Functions without Copies of l 1

1996

Let X be a Banach space. Let Hw*(X*) the Frechet space whose elements are the holomorphic functions defined on X* whose restrictions to each multiple mB(X*), m = 1,2, …, of the closed unit ball B(X*) of X* are continuous for the weak-star topology. A fundamental system of norms for this space is the supremum of the absolute value of each element of Hw*(X*) in mB(X*), m = 1,2,…. In this paper we construct the bidual of l1 when this space contains no copy of l1. We also show that if X is an Asplund space, then Hw*(X*) can be represented as the projective limit of a sequence of Banach spaces that are Asplund.

CombinatoricsUnit sphereMathematics::Functional AnalysisIsolated pointFréchet spaceGeneral MathematicsMathematical analysisHolomorphic functionBanach spaceInfinite-dimensional holomorphySpace (mathematics)Asplund spaceMathematicsMathematische Nachrichten
researchProduct

On the Unit Ball of Operator-valued H 2-functions

2009

Let X be a complex Banach space and let H 2 (\( \mathbb{D} \), X) denote the space of X-valued analytic functions in the unit disc such that $$ \mathop {sup}\limits_{0 < r < 1} \int_0^{2\pi } {\left\| {F\left( {re^{it} } \right)} \right\|^2 \frac{{dt}} {{2\pi }} < \infty .} $$ It is shown that a function F belongs to the unit ball of H 2 ( \( \mathbb{D} \), X) if and only if there exist f∈H ∞ (\( \mathbb{D} \), X) and ϕ∈H ∞ (\( \mathbb{D} \)) such that $$ \left\| {f\left( z \right)} \right\|^2 + \left| {\varphi \left( z \right)} \right|^2 \leqslant 1 and F\left( z \right) = \frac{{f\left( z \right)}} {{1 - z\varphi \left( z \right)}} $$ for |z| < 1.

CombinatoricsUnit sphereOperator (physics)Mathematical analysisBanach spaceUnit (ring theory)Mathematics
researchProduct

A note on Fréchet and approximate subdifferentials of composite functions

1994

The aim of this note is to present in the reflexive Banach space setting a natural and simple proof of the formula of the approximate subdifferential of a composite function.

Composite functionMathematics::Functional AnalysisPure mathematicsSimple (abstract algebra)General MathematicsComposite numberBanach spaceSubderivativeMathematicsBulletin of the Australian Mathematical Society
researchProduct

Third-order iterative methods without using any Fréchet derivative

2003

AbstractA modification of classical third-order methods is proposed. The main advantage of these methods is they do not need to evaluate any Fréchet derivative. A convergence theorem in Banach spaces, just assuming the second divided difference is bounded and a punctual condition, is analyzed. Finally, some numerical results are presented.

Computational MathematicsIterative methodFréchet spaceBounded functionApplied MathematicsMathematical analysisConvergence (routing)Banach spaceFréchet derivativeApplied mathematicsQuasi-derivativeCauchy sequenceMathematicsJournal of Computational and Applied Mathematics
researchProduct