Search results for "batch reactor"
showing 10 items of 50 documents
Aerobic granular sludge: State of the art, applications, and new perspectives.
2018
The aerobic granular sludge (AGS) process has attracted significant interest over the last decade and is one of the most promising wastewater treatment technologies. AGS offers several advantages over conventional activated sludge (CAS) including excellent settling, and higher volumetric loading capacity. Because of porosity, concentration gradients develop and stratified aerobic, anoxic, and anaerobic layers develop throughout granule depth. This is the reason for simultaneous nutrient removal in a single tank. Aerobic granulation is influenced by many parameters including wastewater characteristics and operating conditions. Among these, the anaerobic upflow feeding strategy and a properly…
Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA suppleme…
2009
Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch rea…
Electrocarboxylation of benzyl chlorides at silver cathode at the preparative scale level
2008
Abstract The electrocarboxylation of benzyl chlorides to the corresponding carboxylic acids performed at silver cathodes was investigated both theoretically and experimentally in order to find the influence of the operative parameters on the selectivity and on the Faradic efficiency of the process. Theoretical considerations were confirmed by the electrocarboxylation of 1-phenyl-1-chloroethane performed in undivided cells equipped with sacrificial anodes both in a bench-scale electrochemical batch reactor and in a continuous batch recirculation reaction system equipped with a parallel plate electrochemical cell. Selectivity and Faradic yields higher than 80% and 70%, respectively, were obta…
Extruded Expanded Polystyrene Sheets Coated by TiO2 as New Photocatalitic Materials for Foodstuffs Packaging
2012
Nanostructured, photoactive anatase TiO2 sol prepared under very mild conditions using titanium tetraisopropoxide as the precursor is used to functionalise extruded expanded polystyrene (XPS) sheets by spray-coating resulting in stable and active materials functionalised by TiO2 nanoparticles. Photocatalytic tests of these sheets performed in a batch reactor in gas-solid system under UV irradiation show their successful activity in degrading probe molecules (2-propanol, trimethylamine and ethene). Raman spectra ensure the deposition of TiO2 as crystalline anatase phase on the polymer surface. The presence of TiO2 with respect to polymer surface can be observed in SEM images coupled to EDAX …
Performances of a granular sequencing batch reactor (GSBR).
2007
Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organic…
Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures
2019
Abstract A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio ac…
Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment
2006
Abstract In this paper different predictive models for nutrient estimation in a sequencing batch reactor (SBR) for wastewater treatment are compared: principal component regression (PCR), partial least squares (PLS), and artificial neural networks (ANNs). Two unfolding procedures were used: batch-wise and variable-wise. For the latter unfolding method, X and Y matrix augmentation with lagged variables were used in some models to incorporate process dynamics. The results have shown that batch-wise unfolding PLS models outperform the other approaches. The ANN models are good predictive models, but in this particular case-study, they do not outperform those multivariate projection models that …
REMOVAL OF AN ORGANIC REFRACTORY COMPOUND BY PHOTOCATALYSIS IN BATCH REACTOR - KINETIC STUDIES
2015
Monitoring pH and electric conductivity in an EBPR sequencing batch reactor
2004
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobi…
Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems
2011
The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Rea…