Search results for "bayesian inference"

showing 10 items of 120 documents

Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits.

2008

Abstract Reproducing kernel Hilbert spaces regression procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are discussed from a theoretical perspective. It is argued that a nonparametric treatment may be needed for capturing the multiple and complex interactions potentially arising in whole-genome models, i.e., those based on thousands of single-nucleotide polymorphism (SNP) markers. After a review of reproducing kernel Hilbert spaces regression, it is shown that the statistical specification admits a standard mixed-effects linear model representation, with smoothing parameters treated as variance components.…

BiologyInvestigationsBayesian inferenceMachine learningcomputer.software_genreKernel principal component analysisChromosomessymbols.namesakeQuantitative Trait HeritableGeneticsAnimalsGeneticsGenomeModels GeneticRepresenter theorembusiness.industryHilbert spaceLinear modelBayes TheoremQuantitative Biology::GenomicsKernel embedding of distributionsKernel (statistics)symbolsPrincipal component regressionRegression AnalysisArtificial intelligencebusinesscomputerChickensGenetics
researchProduct

Socio-economic deprivation and COVID-19 infection: a Bayesian spatial modelling approach

2022

Il presente articolo ha l’obiettivo di analizzare l’effetto della deprivazione socio-economica sull’incidenza da COVID-19 a livello sub-comunale. Grazie alla disponibilit`a di informazioni sui tassi di incidenza mensili da COVID-19 a livello di sezione di censimento per i due comuni di Palermo e Catania (Italia), viene pro- posto l’utilizzo di un modello spaziale Bayesiano con distribuzione binomiale zero- inflated. I risultati mostrano un’associazione tra livelli di deprivazione e incidenza da COVID-19 nei due comuni, controllando per la struttura spaziale delle unit`a areali considerate. Alla luce dei risultati, si rendono necessarie azioni di politica sanitaria focalizzando gli intervent…

COVID-19 Socio-economic inequalities Bayesian Inference Laplace approximation Spatial-temporal models
researchProduct

Channel selection in Cognitive Radio Networks: A Switchable Bayesian Learning Automata approach

2013

We consider the problem of a user operating within a Cognitive Radio Network (CRN) which involves N channels each associated with a Primary User (PU). The problem consists of allocating a channel which, at any given time instant is not being used by a PU, to a Secondary User (SU). Within our study, we assume that a SU is allowed to perform “channel switching”, i.e., to choose an alternate channel S times (where S +1 ≤ N) if the previous choice does not lead to a channel which is vacant. The paper first presents a formal probabilistic model for the problem itself, referred to as the Formal Secondary Channel Selection (FSCS) problem, and the characteristics of the FSCS are then analyzed. Ther…

Cognitive radioTheoretical computer sciencebusiness.industryComputer scienceBayesian probabilitySampling (statistics)Statistical modelArtificial intelligenceBayesian inferencebusinessProbability vectorCommunication channelAutomaton2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
researchProduct

Bayesian inference in Markovian queues

1994

This paper is concerned with the Bayesian analysis of general queues with Poisson input and exponential service times. Joint posterior distribution of the arrival rate and the individual service rate is obtained from a sample consisting inn observations of the interarrival process andm complete service times. Posterior distribution of traffic intensity inM/M/c is also obtained and the statistical analysis of the ergodic condition from a decision point of view is discussed.

Computer scienceBayesian probabilityErgodicityPosterior probabilityManagement Science and Operations ResearchBayesian inferencePoisson distributionComputer Science ApplicationsExponential functionTraffic intensitysymbols.namesakeComputational Theory and MathematicsStatisticssymbolsApplied mathematicsErgodic theoryQueueing Systems
researchProduct

Distributed Particle Metropolis-Hastings Schemes

2018

We introduce a Particle Metropolis-Hastings algorithm driven by several parallel particle filters. The communication with the central node requires the transmission of only a set of weighted samples, one per filter. Furthermore, the marginal version of the previous scheme, called Distributed Particle Marginal Metropolis-Hastings (DPMMH) method, is also presented. DPMMH can be used for making inference on both a dynamical and static variable of interest. The ergodicity is guaranteed, and numerical simulations show the advantages of the novel schemes.

Computer scienceMonte Carlo methodErgodicity020206 networking & telecommunications02 engineering and technologyFilter (signal processing)Bayesian inferenceStatistics::ComputationSet (abstract data type)Metropolis–Hastings algorithm[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingTransmission (telecommunications)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmComputingMilieux_MISCELLANEOUS2018 IEEE Statistical Signal Processing Workshop (SSP)
researchProduct

Group Metropolis Sampling

2017

Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. Two well-known class of MC methods are the Importance Sampling (IS) techniques and the Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce the Group Importance Sampling (GIS) framework where different sets of weighted samples are properly summarized with one summary particle and one summary weight. GIS facilitates the design of novel efficient MC techniques. For instance, we present the Group Metropolis Sampling (GMS) algorithm which produces a Markov chain of sets of weighted samples. GMS in general outperforms other multiple try schemes…

Computer scienceMonte Carlo methodMarkov processSlice samplingProbability density function02 engineering and technologyMultiple-try MetropolisBayesian inferenceMachine learningcomputer.software_genre01 natural sciencesHybrid Monte Carlo010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineering0101 mathematicsComputingMilieux_MISCELLANEOUSMarkov chainbusiness.industryRejection samplingSampling (statistics)020206 networking & telecommunicationsMarkov chain Monte CarloMetropolis–Hastings algorithmsymbolsMonte Carlo method in statistical physicsMonte Carlo integrationArtificial intelligencebusinessParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingcomputerAlgorithmImportance samplingMonte Carlo molecular modeling
researchProduct

What should I do next? Using shared representations to solve interaction problems

2011

Studies on how “the social mind” works reveal that cognitive agents engaged in joint actions actively estimate and influence another’s cognitive variables and form shared representations with them. (How) do shared representations enhance coordination? In this paper, we provide a probabilistic model of joint action that emphasizes how shared representations help solving interaction problems. We focus on two aspects of the model. First, we discuss how shared representations permit to coordinate at the level of cognitive variables (beliefs, intentions, and actions) and determine a coherent unfolding of action execution and predictive processes in the brains of two agents. Second, we discuss th…

Computer sciencejoint actionModels PsychologicalBayesian inference050105 experimental psychology03 medical and health sciencesUser-Computer Interface0302 clinical medicineCognitionJoint action Graphical models Human-Robot Interaction Shared representationsHumans0501 psychology and cognitive sciencesInterpersonal RelationsCooperative BehaviorProblem SolvingConstellationCognitive scienceSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFocus (computing)Communicationbusiness.industryGeneral Neuroscience05 social sciencesStatistical modelCognitionpredictionTower (mathematics)Joint actionAction (philosophy)businesssignaling030217 neurology & neurosurgery
researchProduct

Data Augmentation Approach in Bayesian Modelling of Presence-only Data

2011

Abstract Ecologists are interested in prediction of potential distribution of species in suitable areas, essential for planning conservation and management strategies. Unfortunately, often the only available information in such studies is the true presence of the species at few locations of the study area and the associated environmental covariates over the entire area, referred as presence-only data. We propose a Bayesian approach to estimate logistic linear regressions adapted to presence-only data through the introduction of a random approximation of the correction factor in the adjusted logistic model that allows us to overcome the need to know a priori the prevalence of the species.

Data augmentationPresence-only dataComputer scienceBayesian probabilityLogistic regressionBayesian inferencePseudo-absence approachBayesian statisticsBayesian model; Data augmentation; MCMC algorithm; Potential distribution; Presence-only data; Pseudo-absence approachBayesian model Data augmentation MCMC algorithm Presence-only data Pseudo-absence approach Potential distributionpotentialdistributionBayesian modelBayesian multivariate linear regressionPotential distributionStatisticsCovariateEconometricsGeneral Earth and Planetary Sciencespseudo-absence approach; potentialdistribution.; data augmentation; presence-only data; potential distribution; mcmc algorithm; bayesian modelBayesian linear regressionBayesian averageMCMC algorithmGeneral Environmental ScienceProcedia Environmental Sciences
researchProduct

The Effective Sample Size

2013

Model selection procedures often depend explicitly on the sample size n of the experiment. One example is the Bayesian information criterion (BIC) criterion and another is the use of Zellner–Siow priors in Bayesian model selection. Sample size is well-defined if one has i.i.d real observations, but is not well-defined for vector observations or in non-i.i.d. settings; extensions of critera such as BIC to such settings thus requires a definition of effective sample size that applies also in such cases. A definition of effective sample size that applies to fairly general linear models is proposed and illustrated in a variety of situations. The definition is also used to propose a suitable ‘sc…

Deviance information criterionEconomics and EconometricsBayesian information criterionSample size determinationModel selectionPrior probabilityStatisticsLinear modelBayesian inferenceAlgorithmSelection (genetic algorithm)Statistics::ComputationMathematicsEconometric Reviews
researchProduct

Conditional Random Quantities and Iterated Conditioning in the Setting of Coherence

2013

We consider conditional random quantities (c.r.q.’s) in the setting of coherence. Given a numerical r.q. X and a non impossible event H, based on betting scheme we represent the c.r.q. X|H as the unconditional r.q. XH + μH c , where μ is the prevision assessed for X|H. We develop some elements for an algebra of c.r.q.’s, by giving a condition under which two c.r.q.’s X|H and Y|K coincide. We show that X|HK coincides with a suitable c.r.q. Y|K and we apply this representation to Bayesian updating of probabilities, by also deepening some aspects of Bayes’ formula. Then, we introduce a notion of iterated c.r.q. (X|H)|K, by analyzing its relationship with X|HK. Our notion of iterated conditiona…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica MatematicaSettore INF/01 - Informaticaconditional random quantitiesCoherence (statistics)Bayesian inferencebayesian updatingcoherenceCombinatoricsconditional previsionsBayes' theoremIterated functionbayesian updating; conditional random quantities; betting scheme; conditional previsions; coherence; iterated conditioning; iterated conditioning.Coherence betting scheme conditional random quantities conditional previsions Bayesian updating iterated conditioning.Scheme (mathematics)iterated conditioningConditioningRepresentation (mathematics)betting schemeEvent (probability theory)Mathematics
researchProduct