Search results for "binaries"

showing 10 items of 191 documents

Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow?

2007

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Astrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesstars: magnetic fields stars: neutron pulsars: general pulsars: individual: SAX J1808.4-3658 X-rays: binariesAstrophysics::Earth and Planetary AstrophysicsAstrophysics
researchProduct

Accretion onto Neutron Stars: spectral and timing investigation of Low Mass X-ray Binaries

2021

Settore FIS/05 - Astronomia E Astrofisicaneutron stars X rays X rays binaries accretion accretion disks eclipses ephemerides stars: individual: 4U 1702-429 stars: individual: Scorpius X-1 stars: individual: X 1822-371 stars: individual: GX 17+2
researchProduct

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480-2446 (Terzan 5)

2011

The newly discovered 11-Hz accreting pulsar, IGR J17480-2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

Settore FIS/05 - Astronomia E Astrofisicapulsars: individual: IGR J17480-2446 X-rays: binariesindividual: IGR J17480-2446 X-rays: binaries [pulsars]
researchProduct

Testing jet geometries and disc-jet coupling in the neutron star LMXB 4U 0614 + 091 with the internal shocks model

2020

Multi-wavelength spectral energy distributions of Low Mass X-ray Binaries in the hard state are determined by the emission from a jet, for frequencies up to mid-infrared, and emission from the accretion flow in the optical to X-ray range. In the last years, the flat radio-to-mid-IR spectra of Black Hole (BH) X-ray binaries was described using the internal shocks model, which assumes that the fluctuations in the velocity of the ejecta along the jet are driven by the fluctuations in the accretion flow, described by the X-ray Power Density Spectrum (PDS). In this work we attempt to apply this model for the first time to a Neutron Star (NS) LMXB, i.e. 4U 0614+091. We used the multi-wavelength d…

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSpectral linestars: jetsX-rays: binariesstars: neutronaccretion0103 physical sciencesEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSpectral densityAstronomy and AstrophysicsConical surfaceshock wavesaccretion discsAccretion (astrophysics)Neutron starSpace and Planetary Scienceaccretion accretion discsAstrophysics - High Energy Astrophysical PhenomenaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

2016

The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blue-shifted emission lines. Here we investigate the origin of these asymmetries through three-dimensional hydrodynamic simulations describing the outburst during the first 20 days of evolution. The model takes into account thermal conduction and radiative cooling and assumes a blast wave propagates through an equatorial density enhancement. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and th…

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral line0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumEjectaNovae010303 astronomy & astrophysicsSpectral line ratiosAstrophysics::Galaxy AstrophysicsBlast waveLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBinaries: symbioticWhite dwarfAstronomyAstronomy and AstrophysicsCircumstellar matterStars: individual: (V745 Sco)Astronomy and AstrophysicX-rays: binarieShock waveSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaCataclysmic variableMonthly Notices of the Royal Astronomical Society
researchProduct

The nearest X-ray emitting protostellar jet observed with HST

2009

The HH 154 jet coming from the YSO binary L1551 IRS5 is one of the closest (about 150 pc) astrophysical jet known. It is therefore a unique laboratory for studies of outflow mechanisms and of the shocks forming at the interaction front between the expanding material and the ambient medium. The substructures (knots) observed within the HH 154 jet were imaged in several spectral bands using the Hubble Space Telescope. This allows us to derive a simple characterization of the physical conditions in different structures as well as to measure the proper motion of the knots in the jet, their flux variability and shock emission over a time base of about ten years. These knots in the jet undergo si…

Shock wavePhysicsProper motionAstrophysics::High Energy Astrophysical PhenomenaAstronomyBinary numberAstrophysicsSpectral bandsSettore FIS/05 - Astronomia E AstrofisicaKnot (unit)Astrophysical jetPlanetary bow shockCoincidentinterplanetary shocks X-ray binaries Astronomical and space-research instrumentationOutflowAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

INTEGRAL and RXTE observations of accreting millisecond pulsar IGR J00291+5934 in outburst

2005

Simultaneous observations of the accretion-powered millisecond pulsar IGR J00291+5934 by International Gamma-Ray Astrophysics Laboratory and Rossi X-ray Timing Explorer during the 2004 December outburst are analysed. The average spectrum is well described by thermal Comptonization with an electron temperature of 50 keV and Thomson optical depth tau_T ~ 1 in a slab geometry. The spectral shape is almost constant during the outburst. We detect a spin-up of the pulsar with nudot=8.4x10E-13 Hz/s. The ISGRI data reveal the pulsation of X-rays at a period of 1.67 milliseconds up to ~150 keV. The pulsed fraction is shown to increase from 6 per cent at 6 keV to 12--20 per cent at 100 keV. This is n…

Spectral shape analysisAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHot spot (veterinary medicine)Astrophysicsaccretion accretion discs binaries: close stars: individual: IGR J00291+5934 stars: neutron X-rays: binariesAstrophysics01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]symbols.namesakestars: neutronPulsaraccretionMillisecond pulsar0103 physical sciencesOptical depth (astrophysics)010306 general physics010303 astronomy & astrophysicsPhysicsMillisecondbinaries: close[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astrophysics (astro-ph)Astronomy and Astrophysicsaccretion discspulsars: individual (IGR J00291+5934)13. Climate actionSpace and Planetary SciencesymbolsElectron temperatureDoppler effectX-ray: binaries
researchProduct

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

2017

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

Star (game theory)FOS: Physical sciencesX-rays: starsAstrophysicsEphemeris01 natural sciencesJovianstars: neutronSettore FIS/05 - Astronomia E Astrofisicastars: individual: MXB 1659-2980103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary system010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbinaries: eclipsingAstronomyAstronomy and AstrophysicsCoupling (probability)Orbital periodX-rays: binarieNeutron stareclipsing; stars: individual: MXB 1659-298; stars: neutron; X-rays: binaries; X-rays: stars [ephemerides; binaries]Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsephemerideAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen

2017

Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27-36 M red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase. Aims. Here, we aim at imaging observations of V766 Cen to confirm the presence of the close companion. Methods. We used near-infrared H-band aperture synthesis imaging at three epochs in 2014, 2016, and 2017, employing the PIONIER instrument at the Very Large Telescope Interferometer (VLTI). Results. The visibility data indicate a mean Rosseland angular diameter of 4.1 ± 0.8 mas, corresponding to a radius of 1575 ± 400 R. The data show an ex…

Stars: imagingAperture synthesisBinaries: eclipsingFOS: Physical sciencesAstrophysics01 natural sciences010309 opticsCommon envelopeBinaries: closeAngular diameter0103 physical sciencesmassive [Stars]Red supergiantStars: massiveYellow hypergiant010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsVery Large Telescopeeclipsing [Binaries]Astronomy and AstrophysicsRadiusAstrophysics - Solar and Stellar AstrophysicsSupergiantsSpace and Planetary Scienceimaging [Stars]Techniques: interferometricinterferometric [Techniques]Supergiantclose [Binaries]Astronomy & Astrophysics
researchProduct

Optical counterpart to Swift J0243.6+6124

2020

Context. Swift J0243.6+6124 is a unique system. It is the first and only ultra-luminous X-ray source in our Galaxy. It is the first and only high-mass Be X-ray pulsar showing radio jet emission. It was discovered during a giant X-ray outburst in October 2017. While there are numerous studies in the X-ray band, very little is known about the optical counterpart. Aims. Our aim is to characterize the variability timescales in the optical and infrared bands in order to understand the nature of this intriguing system. Methods. We performed optical spectroscopic observations to determine the spectral type. Long-term photometric light curves together with the equivalent width of the Hα line were u…

Swift010504 meteorology & atmospheric sciencesBe starAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAngular velocityAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsindividual: swift J0243.6+6124 [Stars]Star (graph theory)01 natural sciencesLuminosity0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencescomputer.programming_languageHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhotosphereAstronomy and AstrophysicsBeneutron [Stars]DissipationCircumstellar diskSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysicsemission line [Stars]Astrophysics - High Energy Astrophysical Phenomenacomputerclose [Binaries]binaries [X rays]
researchProduct