Search results for "binary"
showing 10 items of 833 documents
Numerical relativity simulations of thick accretion disks around tilted Kerr black holes
2015
In this work we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr BH. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unst…
Spectral Evolution of Scorpio X‐1 along its Color‐Color Diagram
2007
We analyze a large collection of RXTE archive data of the bright X‐ray source Scorpius X‐1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by selecting energy spectra from its Color‐Color Diagram. We model the spectra with the combination of two absorbed components: a soft thermal component, which can be interpreted as thermal emission from an accretion disk, and a hybrid Comptonization component, which self‐consistently includes the Fe Kα fluorescence line and the Compton reflected continuum. The presence of hard emission in Scorpius X‐1 has been previously reported, however, without a clear relation with the accreti…
Jahn-Teller effect in molecular electronics: quantum cellular automata
2017
The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/mul…
Gravitational-wave parameter inference using Deep Learning
2021
We explore machine learning methods to detect gravitational waves (GW) from binary black hole (BBH) mergers using deep learning (DL) algorithms. The DL networks are trained with gravitational waveforms obtained from BBH mergers with component masses randomly sampled in the range from 5 to 100 solar masses and luminosity distances from 100 Mpc to, at least, 2000 Mpc. The GW signal waveforms are injected in public data from the O2 run of the Advanced LIGO and Advanced Virgo detectors, in time windows that do not coincide with those of known detected signals, and the data from each detector in the Advanced LIGO and Advanced Virgo network is combined into a unique RGB image. We show that a clas…
Orbital X‐Ray Variability of the Microquasar LS 5039
2005
The properties of the orbit and the donor star in the high mass X-ray binary microquasar LS 5039 indicate that accretion processes should mainly occur via a radiatively driven wind. In such a scenario, significant X-ray variability would be expected due to the eccentricity of the orbit. The source has been observed at X-rays by several missions, although with a poor coverage that prevents to reach any conclusion about orbital variability. Therefore, we conducted RossiXTE observations of the microquasar system LS 5039 covering a full orbital period of 4 days. Individual observations are well fitted with an absorbed power-law plus a Gaussian at 6.7 keV, to account for iron line emission that …
Pulsed high-energy γ-rays from the radio pulsar PSRI706–44
1992
Gamma radiation above 100 MeV in energy has been detected from the radio pulsar PSR1706-44. The gamma emission forms a single broad peak within the pulsar period of 102 ms, in contrast to the two narrow peaks seen in the other three known high-energy gamma-ray pulsars. The emission mechanism in all cases is probably the same, the differences arising from the geometry of the magnetic and rotation axes and the line of sight. Gamma-ray emission accounts for as much as 1 percent of the total neutron star spindown energy in these pulsars, much more than emerges at optical or radio frequencies. Thus, study of this emission is important in understanding pulsar emission and evolution.
Building Digital Government by XML
2005
Continuing innovations in information and communication technologies offer powerful tools for building digital government but, at the same time, in many environments they have lead into a number of heterogeneous, expensive, and inconsistent solutions. XML offers a common metalanguage and terminology to develop means for system and data integration, and for gradual transfer to more consistent formats in information assets. The paper describes ways for the use of XML in public administration and gives examples of the use, particularly, in Finland. The paper introduces XML standardization levels and types in public administration. Experiences of the long-term standardization of the Finnish par…
Different averages of a fuzzy set with an application to vessel segmentation
2005
Image segmentation is a major problem in image processing, particularly in medical image analysis. A great number of segmentation procedures produce intermediate gray-scale images that can be understood as fuzzy sets. Additionally, some segmentation procedures tend to leave free tuning parameters (very influential in the final binary image) for the user. These different binary images can be easily aggregated (into a fuzzy set) by making use of fuzzy set theory. In any case, a single binary image is required so our interest is to associate a crisp set to a given fuzzy set in an intelligent and unsupervised manner. The main idea of this paper is to define the averages of a given fuzzy set by …
Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data
2018
We assess total-variation methods to denoise gravitational-wave signals in real noise conditions, by injecting numerical-relativity waveforms from core-collapse supernovae and binary black hole mergers in data from the first observing run of Advanced LIGO. This work is an extension of our previous investigation where only Gaussian noise was used. Since the quality of the results depends on the regularization parameter of the model, we perform an heuristic search for the value that produces the best results. We discuss various approaches for the selection of this parameter, either based on the optimal, mean, or multiple values, and compare the results of the denoising upon these choices. Mor…
Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs
2014
In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …