Search results for "binding site"

showing 10 items of 856 documents

Delineation of the catalytic domain of Clostridium difficile toxin B-10463 to an enzymatically active N-terminal 467 amino acid fragment.

2006

Abstract In an attempt to directly approach the postulated toxic domain of Clostridium difficile 's TcdB-10463, eight subclones of different size and locations in the N-terminal third of the toxin were generated. Expression of these toxin fragments was checked in Western blots and the enzymatic activity of the expressed proteins was analyzed by glucosylating Ras related small GTP-binding proteins. Two polypeptides of 875 aa (TcdBc1–3) and 557 aa (TcdBc1-H) glucosylated their targets Rho, Rac and Cdc42 with the same activity and specificity as the holotoxin. In comparison 516 aa (TcdBc1-N) and 467 aa (TcdBc1-A) protein fragments exhibited highly reduced activity, while Tcdc1 and TcdB2–3 (aa …

Bacterial ToxinsMolecular Sequence DataClostridium difficile toxin Bmedicine.disease_causeMicrobiologyStructure-Activity RelationshipGTP-binding protein regulatorsClostridiumBacterial ProteinsGeneticsmedicineMolecular Biologychemistry.chemical_classificationBinding SitesbiologyBase SequenceToxinbiology.organism_classificationMolecular biologyPeptide FragmentsRecombinant ProteinsAmino acidEnzymechemistryCdc42 GTP-Binding ProteinBiochemistryGlucosyltransferasesbiology.proteinGlucosyltransferaseFEMS microbiology letters
researchProduct

Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus…

1992

The homologous C-terminal repeats of Clostridium difficile toxins (ToxA and ToxB) and streptococcal glucosyltransferases appear to mediate protein-carbohydrate interactions at cellular binding sites with sugar moieties as substrates. A consensus sequence of 134 repeating units from gram-positive bacteria indicates that these repeats have a modular design with (i) a stretch of aromatic amino acids proposed to be involved in the primary carbohydrate-protein interaction, (ii) an amplification of this interaction by repetition of the respective sequences, and (iii) a second domain, not characterized, that is responsible for carbohydrate specificity.

Bacterial ToxinsMolecular Sequence DataEnterotoxinMicrobiologyMicrobiologyStreptococcus mutanschemistry.chemical_compoundEnterotoxinsGlucosyltransferasesBacterial ProteinsGlycosyltransferaseConsensus SequenceConsensus sequenceAromatic amino acidsAmino Acid SequenceBinding siteMolecular BiologyPeptide sequenceBinding SitesbiologySequence Homology Amino AcidClostridioides difficileCytotoxinsClostridium difficilechemistryBiochemistryGlucosyltransferasesbiology.proteinCarbohydrate MetabolismResearch ArticleJournal of bacteriology
researchProduct

Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

2001

ABSTRACT Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth ( Plutella xylostella ) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that…

Bacterial ToxinsMolecular Sequence DataSpodopteraBinding CompetitiveApplied Microbiology and BiotechnologyMicrobiologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsAmino Acid SequenceBinding siteBinding SitesDiamondback mothBacillus thuringiensis ToxinsEcologybiologyHeliothis virescensfungibiology.organism_classificationEndotoxinsLepidopteraPlutellidaeCry1AcLarvaNoctuidaeFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae)

2004

ABSTRACT In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125 I-labeled Cry1Ab protein ( 125 I-Cry1Ab) and 125 I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in com…

Bacterial ToxinsPopulationBacillus thuringiensisCarbohydratesDrug ResistanceHelicoverpa armigeraModels BiologicalApplied Microbiology and BiotechnologyMicrobiologyHemolysin Proteinschemistry.chemical_compoundBacterial ProteinsLectinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsBinding siteSoybean agglutininPest Control BiologicaleducationGossypiumeducation.field_of_studyBinding SitesBacillus thuringiensis ToxinsEcologybiologyfungifood and beveragesPlants Genetically Modifiedbiology.organism_classificationSialic acidEndotoxinsLepidopteraKineticsCry1AcchemistryBiochemistryGenes BacterialLarvaNoctuidaeDigestive SystemFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis

2018

Abstract: Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2‐substituted‐1H‐benzo[d]imidazole derivatives (9ad) showing affinity in the submicromolar range (Ki = 0.150.69 μM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intrace…

BenzimidazoleCell SurvivalIn silicoLeishmania mexicanaAntiprotozoal AgentsDrug Evaluation PreclinicalProtozoan ProteinsDrug resistanceCysteine Proteinase InhibitorsPharmacologyAntileishmanial agents Benzimidazole derivatives Docking studies In silico profiling Leishmania mexicanaCPB2.8 Biochemistry Molecular Medicine01 natural sciencesBiochemistryLeishmania mexicanaCell LineInhibitory Concentration 50chemistry.chemical_compoundCysteine ProteasesDrug DiscoverymedicineHumansAmastigoteLeishmaniasisBiologyEnzyme AssaysPharmacologyBinding Sitesbiology010405 organic chemistryChemistryPharmacology. TherapyOrganic ChemistryHydrogen BondingLeishmaniasisbiology.organism_classificationmedicine.diseaseLeishmaniaProtein Structure Tertiary0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistryChemistryMolecular MedicineBenzimidazolesHuman medicineLeishmania infantumChemical biology and drug design
researchProduct

Low temperature optical spectroscopy of low-spin ferric hemeproteins

1996

We report the Soret absorption spectra (500-350 nm) of the cyanomet derivatives of human hemoglobin and horse myoglobin, in the temperature range 300-20 K and in two different solvents (65% v/v glycerol-water or 65% v/v ethylene glycol-water). In order to obtain information on stereodynamic properties of active site of the two hemeproteins, we perform an analysis of the band profiles within the framework of electron-vibrations coupling. This approach enables us to single out the various contributions to the spectral bandwidth, such as those arising from non-radiative decay of the excited electronic state (homogeneous broadening) and from the coupling of the electronic transition i) with hig…

Binding SitesAbsorption spectroscopyChemistryIronBiophysicsAnalytical chemistryGeneral MedicineSoft modesAtmospheric temperature rangeSpectral lineMolecular electronic transitionCold TemperatureSpectrophotometrySolventsAnimalsHumansPhysical chemistryHorsesHemeproteinsMetmyoglobinMuscle SkeletalHomogeneous broadeningSpectroscopyOxidation-ReductionMethemoglobin
researchProduct

Cu2+and AMP complexation of enlarged tripodal polyamines

2006

The synthesis, characterization, Cu2+ coordination and interaction with AMP of three tripodal polyamines are reported. The polyamines are based on the structure of the tetraamine (tren) which has been enlarged with three propylamino functionalities (TAL), with a further anthrylmethyl fragment at one of its terminal primary nitrogens (ATAL) or with naphthylmethyl fragments at its three ends (N3TAL). The protonation constants of all three polyamines show that at pH 6, all six primary and secondary nitrogen atoms in the arms are protonated. The interaction with Cu2+ and AMP (adenosine-5′-monophosphate) has been studied by potentiometric, UV-Vis, ESI-MS spectroscopy and NMR techniques. pH-Metri…

Binding SitesAqueous solutionMolecular StructureStereochemistryChemistrySpectrum AnalysisPotentiometric titrationProtonationAdenosine MonophosphateAdductInorganic ChemistryParamagnetismPolyaminesPotentiometrySpectroscopyTernary operationCopperStoichiometryDalton Trans.
researchProduct

Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from Aspergillus fumigatus

2022

Abstract Aspergillus fumigatus, one of the most widespread opportunistic human fungal pathogens, adapts to zinc limitation by secreting a 310 amino acid Aspf2 zincophore, able to specifically bind Zn(II) and deliver it to a transmembrane zinc transporter, ZrfC. In this work, we focus on the thermodynamics of Zn(II) complexes with unstructured regions of Aspf2; basing on a variety of spectrometric and potentiometric data, we show that the C-terminal part has the highest Zn(II)-binding affinity among the potential binding sites, and Ni(II) does not compete with Zn(II) binding to this region. The 14 amino acid Aspf2 C-terminus coordinates Zn(II) via two Cys thiolates and two His imidazoles and…

Binding SitesAspergillus fumigatusZn(II)- and Ni(II)-binding peptidesMetals and AlloysBiophysicsBiochemistryBiomaterialsZincthermodynamicsProtein DomainsChemistry (miscellaneous)zincophorepotentiometryHumansAmino AcidsMetallomics
researchProduct

D-Galactose binding lectins from the tunicate Ascidiamalaca: Subunit characterization and hemocyte surface distribution

1988

Abstract D-galactose specific lectins purified from Ascidia malaca serum contain a major protein component with an apparent molecular weight of about 58,000 daltons, which moves more rapidly under non-reducing conditions. Intramolecular disulfide linkages can explain this behaviour, suggesting a compact protein structure. Membrane lectins have been demonstrated on the surface of about 34% hemocytes by immunofluorescent methods using a rabbit antiserum against the isolated serum lectins. Small, medium and large hemocytes can be positive, as also shown by binding on Sepharose spherules or by rosette formation with sheep and rabbit erythrocytes. Binding is inhibited by the same sugars specific…

Binding SitesBlood CellsHemocytesRosette FormationGalectinsProtein subunitCell MembraneImmunologyLectinBiologyBinding CompetitiveSepharosechemistry.chemical_compoundHemagglutininsProtein structurechemistryBiochemistryGalactoseGalactose bindingbiology.proteinAnimalsProtein quaternary structureUrochordataAntibodyDevelopmental BiologyDevelopmental & Comparative Immunology
researchProduct

In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle ca…

1999

Biochemical and structural characterization studies on the p7 putative movement protein from a Spanish isolate of carnation mottle carmovirus (CarMV) have been conducted. The CarMV p7 gene was fused to a sequence coding for a six-histidine tag and expressed in bacteria, allowing the purification of CarMV p7 and the production of a specific antiserum. This antiserum led to the immunological identification of CarMV p7 in infected leaf tissue from the experimental host Chenopodium quinoa. Putative nucleic acid-binding properties of the CarMV p7 have been explored and demonstrated with both electrophoretic mobility shift and RNA-protein blot in vitro assays using digoxigenin-labeled riboprobes.…

Binding SitesCarmovirusRecombinant Fusion ProteinsMolecular Sequence DataCooperative bindingRNARNA-Binding ProteinsBiologybiology.organism_classificationMolecular biologyPlant Viral Movement ProteinsViral ProteinsBiochemistryVirologyNucleic acidEscherichia coliCarmovirusAmino Acid SequenceMovement proteinPeptide sequenceGeneBinding domainVirology
researchProduct