Search results for "biodistribution"

showing 10 items of 94 documents

Effect of endothelial cell heterogeneity on nanoparticle uptake.

2020

Endothelial cells exhibit distinct properties in morphology and functions in different organs that can be exploited for nanomedicine targeting. In this work, endothelial cells from different organs, i.e. brain, lung, liver, and kidney, were exposed to plain, carboxylated, and amino-modified silica. As expected, different protein coronas were formed on the different nanoparticle types and these changed when foetal bovine serum (FBS) or human serum were used. Uptake efficiencies differed strongly in the different endothelia, confirming that the cells retained some of their organ-specific differences. However, all endothelia showed higher uptake for the amino-modified silica in FBS, but, inter…

Biodistributionmedia_common.quotation_subjectReceptor expressionEndothelial cellsBristol Heart InstitutePharmaceutical ScienceUptake02 engineering and technologyADHESIONBlood–brain barrier030226 pharmacology & pharmacySERUM03 medical and health sciencesDELIVERY0302 clinical medicineBIODISTRIBUTIONmedicineHumansBovine serum albuminInternalization/dk/atira/pure/core/keywords/heart_SRImedia_commonchemistry.chemical_classificationKidneyPROTEIN-CORONAbiologyChemistryBLOOD-BRAIN-BARRIEREndothelial CellsBiological Transportrespiratory system021001 nanoscience & nanotechnologyCell biologyEndothelial stem cellSURFACE-CHARGEmedicine.anatomical_structureSIZENanomedicineTransferrinProtein coronabiology.proteinINTERNALIZATIONNanoparticlesProtein CoronaHeterogeneityMEMBRANE0210 nano-technologyEndothelial cell targetingInternational journal of pharmaceutics
researchProduct

Granulocyte Colony-Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part I): Synthesis and Biodistribution Studies

2018

In the field of cancer immunotherapy, an original approach consists of using granulocyte colony-stimulating factor (G-CSF) to target and activate neutrophils, cells of the innate immune system. G-CSF is a leukocyte stimulating molecule which is commonly used in cancer patients to prevent or reduce neutropenia. We focused herein on developing a G-CSF nanocarrier which could increase the in vivo circulation time of this cytokine, keeping it active for targeting the spleen, an important reservoir of neutrophils. G-CSF-functionalized silica and gold nanoparticles were developed. Silica nanoparticles of 50 nm diameter were functionalized by a solid phase synthesis approach. The technology enable…

Biodistributionmedicine.medical_treatmentBiomedical EngineeringPharmaceutical ScienceBioengineering02 engineering and technology010402 general chemistry01 natural sciences[ SDV.CAN ] Life Sciences [q-bio]/CancerMiceDrug Delivery SystemsImmune systemAdjuvants ImmunologicCancer immunotherapyIn vivoGranulocyte Colony-Stimulating FactorPEG ratiomedicineAnimals[CHIM]Chemical SciencesTissue Distribution[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyComputingMilieux_MISCELLANEOUSPharmacologyDrug CarriersChemistryOrganic ChemistrySilicon Dioxide021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesGranulocyte colony-stimulating factorColloidal goldBiophysicsNanoparticlesGoldNanocarriers0210 nano-technologySpleenBiotechnologyBioconjugate Chemistry
researchProduct

Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization

2016

International audience; Many studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates. The risk of nephrogenic systemic fibrosis induced by the release of gadolinium ions should encourage the use of macrocyclic chelat…

BiodistributiontumorMaterials scienceGadoliniumchemistry.chemical_elementNanoparticleContext (language use)Nanotechnology02 engineering and technology[CHIM.THER]Chemical Sciences/Medicinal Chemistry010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencesnephrogenic systemic fibrosis[CHIM]Chemical SciencesGeneral Materials ScienceChelationratbiodistributionradiotherapyrenal clearance[ CHIM.THER ] Chemical Sciences/Medicinal Chemistry021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistrymri contrast agentsColloidal goldSurface modification0210 nano-technologySelectivitydihydrolipoic acidmicrobeam radiation-therapy9l gliosarcoma
researchProduct

Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications

2020

Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (&lt

Boron CompoundsBiodistributionboron compound[SDV.BIO]Life Sciences [q-bio]/BiotechnologyFluorophorein ovo modelAstrophysics::High Energy Astrophysical Phenomena[SDV]Life Sciences [q-bio]theranosticNuclear TheoryPhysics::Medical Physicsaza-BODIPY[SDV.CAN]Life Sciences [q-bio]/CancerBoron Neutron Capture Therapy010402 general chemistry01 natural sciencesSodium BorocaptateArticle03 medical and health scienceschemistry.chemical_compoundoptical imagingNIR-IMice0302 clinical medicine[SDV.CAN] Life Sciences [q-bio]/CancerPhysics::Atomic and Molecular ClustersAnimalsHumansNeutronNuclear Experiment10 B-BSHlcsh:QH301-705.5<sup>10</sup>B-BSHChemistryRadiochemistry10B-BSHGeneral MedicineFluorescence[SDV.BIO] Life Sciences [q-bio]/Biotechnology0104 chemical sciencesSWIR[SDV] Life Sciences [q-bio]Neutron capturelcsh:Biology (General)030220 oncology & carcinogenesisBNCTFemaleBODIPYEx vivoCells
researchProduct

Whole-body biodistribution of the cannabinoid type 1 receptor ligand [ 18 F]MK-9470 in the rat

2017

The endocannabinoid system participates in many processes in the body, including memory, reward, pain, motor activity, food intake, energy metabolism, and gastrointestinal functions. [18F]MK-9470 is a positron emission tomography (PET) ligand that binds with high affinity and selectivity to the cannabinoid type 1 receptor. In order to fully characterize ligand behavior, tracer uptake measured using in vivo microPET was compared with results from ex vivo tissue dissection. Twelve male Sprague-Dawley rats were divided into three subgroups and scanned over time periods of 10min, 30min and 90min using PET. Afterwards, a number of the animals' organs were dissected. Uptake of radioactivity was e…

Cancer ResearchBiodistributionChemistrymedicine.medical_treatmentMetaboliteMK-9470PharmacologyLigand (biochemistry)030218 nuclear medicine & medical imaging03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivomedicineMolecular MedicineRadiology Nuclear Medicine and imagingCannabinoidReceptor030217 neurology & neurosurgeryEx vivoNuclear Medicine and Biology
researchProduct

Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by …

2013

The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in…

Cancer ResearchBiodistributionSide effectPharmacologyPhenylbutyrateArticleButyric acidchemistry.chemical_compoundPharmacokineticsmedicineAnimalsRadiology Nuclear Medicine and imagingTissue DistributionCarbon RadioisotopesValproic AcidRadiochemistryValproic AcidBrainLipid metabolismBlood ProteinsBlood proteinsPhenylbutyratesHistone Deacetylase InhibitorschemistryIsotope LabelingPositron-Emission TomographyMolecular MedicineButyric AcidFemalemedicine.drugPapio
researchProduct

Site-Specific Dual-Labeling of a VHH with a Chelator and a Photosensitizer for Nuclear Imaging and Targeted Photodynamic Therapy of EGFR-Positive Tum…

2021

Simple Summary Variable domains of heavy chain only antibodies are small proteins that can be used for tumor imaging and therapy upon conjugation of functional groups. As frequently used random conjugation techniques can decrease binding to the target of interest, site-specific conjugation of these functional groups is preferred. Here, we optimized site-specific conjugation of both a chelator for binding of a radiometal and a photosensitizer to epidermal growth factor receptor (EGFR) binding VHH 7D12. We characterized this dual-labeled VHH for nuclear imaging and targeted photodynamic therapy of EGFR-expressing tumors. Abstract Variable domains of heavy chain only antibodies (VHHs) are valu…

Cancer ResearchFluorescence-lifetime imaging microscopyBiodistribution[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imagingmedia_common.quotation_subjectmedicine.medical_treatmentPhotodynamic therapyvariable domain of heavy chain only antibodies (VHH); site-specific conjugation; dual-labeling; nuclear imaging; photodynamic therapy[SDV.CAN]Life Sciences [q-bio]/Cancer[CHIM.THER]Chemical Sciences/Medicinal Chemistrylcsh:RC254-282Article030218 nuclear medicine & medical imaging03 medical and health sciencesTumours of the digestive tract Radboud Institute for Health Sciences [Radboudumc 14]0302 clinical medicineAll institutes and research themes of the Radboud University Medical CenterIn vivoduallabelingmedicineTumours of the digestive tract Radboud Institute for Molecular Life Sciences [Radboudumc 14]PhotosensitizerInternalizationmedia_commonnuclear imagingChemistrysite-specific conjugationlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthOncologyphotodynamic therapy030220 oncology & carcinogenesisUrological cancers Radboud Institute for Health Sciences [Radboudumc 15]dual-labelingBiophysicsvariable domain of heavy chain only antibodies (VHH)A431 cellsEx vivoCancers
researchProduct

Clinical evaluation of [68Ga]Ga-DATA-TOC in comparison to [68Ga]Ga-DOTA-TOC in patients with neuroendocrine tumours

2019

Abstract Introduction [68Ga]Ga-DATA-TOC is a new radiolabelled somatostatin-analogue for positron emission tomography (PET) imaging of neuroendocrine tumours. Its advantage over DOTA-conjugated compounds is the possibility for high-efficiency labelling with gallium-68 quickly at room temperature with high reliability and without the need for product purification, which enables the development of an instant kit-type labelling method. We evaluated its imaging characteristics in patients with neuroendocrine tumours in comparison to [68Ga]Ga-DOTA-TOC. Methods 19 patients imaged with [68Ga]Ga-DATA-TOC were retrospectively analysed and uptake in normal tissues was compared with a group of 19 pati…

Cancer ResearchPET-CTBiodistributionmedicine.diagnostic_testSomatostatin receptorbusiness.industry030218 nuclear medicine & medical imagingLesion03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSomatostatinchemistryPositron emission tomography030220 oncology & carcinogenesismedicineMolecular MedicineDOTARadiology Nuclear Medicine and imagingIn patientmedicine.symptombusinessNuclear medicineNuclear Medicine and Biology
researchProduct

Labeling and preliminary in vivo assessment of niobium-labeled radioactive species: A proof-of-concept study.

2016

Abstract The application of radionuclide-labeled biomolecules such as monoclonal antibodies or antibody fragments for imaging purposes is called immunoscintigraphy . More specifically, when the nuclides used are positron emitters, such as zirconium-89, the technique is referred to as immuno-PET . Currently, there is an urgent need for radionuclides with a half-life which correlates well with the biological kinetics of the biomolecules under question and which can be attached to the proteins by robust labeling chemistry. 90 Nb is a promising candidate for in vivo immuno-PET , due its half-life of 14.6h and low β + energy of E mean =0.35MeV per decay. 95 Nb on the other hand, is a convenient …

Cancer ResearchPathologymedicine.medical_specialtyBiodistributionmedicine.drug_classMetaboliteNiobiumDeferoxamineMonoclonal antibody030218 nuclear medicine & medical imagingImmunoscintigraphy03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineChloridesDrug StabilityIn vivomedicineAnimalsRadiology Nuclear Medicine and imagingTissue DistributionRadioisotopesOxalatesChemistryIn vitroBevacizumab030220 oncology & carcinogenesisIsotope LabelingPositron-Emission TomographyBiophysicsMolecular MedicineSpecific activityFemaleEx vivoHalf-LifeNuclear medicine and biology
researchProduct

Biodistribution, Uptake and Effects Caused by Cancer-derived Extracellular Vesicles

2015

Extracellular vesicles (EVs) have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisi…

Cell typeStromal cellimmunosuppressionAngiogenesisBiochemistry (medical)Clinical BiochemistryReview ArticleBiologyExtracellular vesiclesmetastatic nichelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenslcsh:RC254-282Cell biologyExtracellular vesicles; biodistribution; trafficking; tumour microenvironment; immunosuppression; metastatic nicheParacrine signallingCancer stem celltraffickingCancer cellExtracellulartumour microenvironmentReprogrammingbiodistributiontraffick‐ ingJournal of Circulating Biomarkers
researchProduct