Search results for "biomaterial"

showing 10 items of 1350 documents

The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling.

2013

14 pages; International audience; In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The or…

0106 biological sciencesProteomeCoralMolecular Sequence Datacalcium carbonate skeletonProteomics010603 evolutionary biology01 natural sciencesMass SpectrometryCalcium CarbonateEvolution Molecular03 medical and health sciencesAcropora milleporaCalcification PhysiologicproteomicsPhylogeneticsAnthozoa[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]evolutionGeneticsAnimals14. Life underwaterAmino Acid Sequencescleractinian[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsMolecular BiologyEcology Evolution Behavior and SystematicsDiscoveriesPhylogeny030304 developmental biologyStaghorn coral0303 health sciencesbiologySequence Homology Amino AcidEcologyMolecular Sequence Annotationbiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsAnthozoabiomineralizationExtracellular MatrixProtein Structure TertiaryEvolutionary biology[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]ProteomeSequence AlignmentFunction (biology)
researchProduct

Utilization of lignin powder for manufacturing self-binding HDF

2017

Abstract The preparation of self-binding lignocellulosic fibreboards has been investigated. Different high-density fibreboards (HDF) were hot-pressed based on a mixture of grey alder (Alnus incana L. Moench) wood chips processed by steam explosion auto-hydrolysis (SE) and 15% or 25% lignin content from three different industrial sources: softwood kraft lignin (SWKL), soda wheat straw lignin (SoWhStL) and hydrolysis wheat straw lignin (HWhStL). Density, thickness swelling (TS) after immersion in water for 24 h, modulus of rupture (MOR), modulus of elasticity (MOE) and strength of internal bond (IB) of the board samples were determined. The amount (15% or 25%) and moisture content (MC) (18±1%…

0106 biological sciencesgrey alderMaterials scienceSoftwoodself-binding fibreboards02 engineering and technology01 natural sciencesBiomaterialssteam explosion auto-hydrolysischemistry.chemical_compoundHydrolysisindustrial lignins010608 biotechnologymedicineLigninComposite materialWater contentSteam explosionAlnus incanabiologyStraw021001 nanoscience & nanotechnologybiology.organism_classificationPulp and paper industrychemistrySwellingmedicine.symptom0210 nano-technologyHolzforschung
researchProduct

Artificial Biosystems by Printing Biology

2020

The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection betwee…

02 engineering and technologyGeneral ChemistryTop-down and bottom-up design010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesLiving systemsBiomaterialsSynthetic biologyBiomimetic MaterialsPrinting Three-DimensionalSystems engineeringaqueous compartments artificial biosystems life-like systems molecular printing synthetic biologyGeneral Materials ScienceSynthetic Biology0210 nano-technologyBiotechnology
researchProduct

Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum

2019

Self-assembled cationic micelles are an attractive platform for binding biologically-relevant polyanions such as heparin. This has potential applications in coagulation control, where a synthetic heparin rescue agent could be a useful replacement for protamine, which is in current clinical use. However, micelles can have low stability in human serum and unacceptable toxicity profiles. This paper reports the optimi- sation of self-assembled multivalent (SAMul) arrays of amphiphilic ligands to bind heparin in competitive conditions. Specifically, modification of the hydrophobic unit kinetically stabilises the self-assembled nanostructures, preventing loss of binding ability in the presence of…

02 engineering and technologyheparinLigands01 natural sciencesMicelleGeneral Materials ScienceMicellesnanomaterialsMolecular StructurenanotechnologybiologyChemistrybiomaterialself-assemblyHeparinsimulation021001 nanoscience & nanotechnologyCholesterolhydrolysisThermodynamics0210 nano-technologyHydrophobic and Hydrophilic Interactionsbiomaterialsmedicine.drugBiocompatibilityCell Survivalmicellesexperimental characterizationserum albuminBiomedical EngineeringSerum albuminself-assembly; nanotechnology; biomaterials; simulation; experimental characterization010402 general chemistrySurface-Active Agentsthermodynamicsbiocompatibilitytoxicity testingAmphiphilemedicineHumansMTT assaycoagulationhydrophobicityHeparinLigandligandscholesteroltoxicitybinding capacityProtaminemolecular dynamicsNanostructures0104 chemical sciencesKineticsblood serumbiology.proteinBiophysicshuman cell linesanions
researchProduct

Performance and feasibility of biotrickling filtration in the control of styrene industrial air emissions

2017

Abstract The performance and feasibility of a pilot unit of biotrickling filter (BTF) for the treatment of industrial emissions polluted by styrene was investigated for one year at a fiber reinforced plastic industrial site. The pilot unit was packed with a structured material with a volume of 0.6 m3. Monitoring results have shown successful treatment of the industrial styrene emissions working at empty bed residence times (EBRT) between 31 and 66 s. The best performance was obtained after 300 days when a more stable biofilm had been developed, obtaining the highest elimination capacity of 18.8 g m−3 h−1 (removal efficiency of 75.6%) working at 31 s of EBRT. In addition, a photocatalytic re…

0211 other engineering and technologies02 engineering and technology010501 environmental sciences01 natural sciencesMicrobiologyBiotecnologialaw.inventionStyreneBiomaterialschemistry.chemical_compoundlawIndustrial siteA fibersWaste Management and DisposalFiltration0105 earth and related environmental sciences021110 strategic defence & security studiesWaste managementEconomic feasibilityDirect costFilter (aquarium)Aire AnàlisiVolume (thermodynamics)chemistryEnvironmental scienceMedi ambient Anàlisi d'impacte
researchProduct

Oil-degrading bacteria from a membrane bioreactor (BF-MBR) system for treatment of saline oily waste: Isolation, identification and characterization …

2016

A collection of forty-two (42) strains was obtained during microbiological screening of a Membrane Bioreactor (MBR) system developed for the treatment of saline oily waste originated from marine transportation. The diversity of the bacterial collection was analyzed by amplification and sequencing of the 16S rRNA gene. Taxonomic analysis showed high level of identity with recognized sequences of seven (7) distinct bacterial genera (Alcanivorax, Erythrobacter, Marinobacter, Microbacterium, Muricauda, Rhodococcus and Rheinheimera). The biotechnological potential of the isolates was screened considering an important factor such as the biosurfactant production. In particular fourteen (14) biosur…

0301 basic medicine030106 microbiologyMicrobacteriumOil pollution010501 environmental sciencesMembrane bioreactor01 natural sciencesMicrobiologyMicrobiologyBiomaterials03 medical and health sciencesAlcanivoraxOil-degrading bacteriaAlcanivorax Membrane bioreactor (MBR) system Oil pollution Oil-degrading bacteria Saline oily wasteWaste Management and DisposalMembrane bioreactor (MBR) system0105 earth and related environmental sciencesbiologyMarinobacter16S ribosomal RNAbiology.organism_classificationIsolation (microbiology)Saline oily wasteAlcanivoraxRhodococcusBacteria
researchProduct

Bifunctional poly(acrylamide) hydrogels through orthogonal coupling chemistries

2019

Biomaterials for cell culture allowing simple and quantitative presentation of instructive cues enable rationalization of the interplay between cells and their surrounding microenvironment. Poly(acrylamide) (PAAm) hydrogels are popular 2D-model substrates for this purpose. However, quantitative and reproducible biofunctionalization of PAAm hydrogels with multiple ligands in a trustable, controlled, and independent fashion is not trivial. Here, we describe a method for bifunctional modification of PAAm hydrogels with thiol- and amine- containing biomolecules with controlled densities in an independent, orthogonal manner. We developed copolymer networks of AAm with 9% acrylic acid and 2% N-(4…

0301 basic medicine570Polymers and PlasticsPolymersOtras Ciencias BiológicasPoly(acrylamide)Acrylic ResinsBiocompatible MaterialsBioengineeringINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología IndustrialCiencias BiológicasBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundUltraviolet visible spectroscopyPolymer chemistryMaterials ChemistryCopolymerAnimalsPolylysineBifunctionalCells CulturedAcrylic acidNeuronschemistry.chemical_classificationOtras Ciencias QuímicasBiomoleculeCiencias QuímicasHydrogels021001 nanoscience & nanotechnologyMice Inbred C57BL030104 developmental biologychemistryChemical engineeringAcrylamideSelf-healing hydrogelsAmine gas treatingLaminin0210 nano-technologyCIENCIAS NATURALES Y EXACTAS
researchProduct

In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Po…

2016

Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the conte…

0301 basic medicineAdultPathologymedicine.medical_specialtyCell typeBiomedical EngineeringAdipose tissueContext (language use)Bioengineering030204 cardiovascular system & hematologyBiochemistryBiomaterials03 medical and health sciences0302 clinical medicineTissue engineeringBlood vessel prosthesisRisk FactorsDiabetes mellitusmedicineAnimalsHumansAgedBioprosthesisTissue Engineeringbusiness.industryMesenchymal stem cellMesenchymal Stem CellsOriginal ArticlesMiddle Agedmedicine.diseaseBiomaterialBlood Vessel ProsthesisRats030104 developmental biologyAdipose TissueCardiovascular DiseasesRats Inbred LewFemaleStem cellbusiness
researchProduct

Time-kill assays of amphotericin B plus anidulafungin against Candida tropicalis biofilms formed on two different biomaterials.

2017

Purpose: To determine the fungicidal activity by time-killing assays of amphotericin B (AMB) combined with anidulafungin (ANF) against biofilms of 2 clinical isolates of Candida tropicalis and the reference strain ATCC® 750, developed on polytetrafluoroethylene (PTFE) and titanium, using the CDC Biofilm Reactor (CBR) as an in vitro model. Methods: Biofilms were developed for 24 hours on the disk surfaces and then exposed to AMB (40 mg/L), ANF (8 mg/L), alone and combined. At predetermined time points after drug exposure, biofilms were removed from the disk surface by vortexing-sonication to quantify viable biofilm cells. Results: Drug activity was dependent on strain and time. After exposur…

0301 basic medicineAntifungalmedicine.drug_class030106 microbiologyBiomedical EngineeringMedicine (miscellaneous)BioengineeringAnidulafunginMicrobiologyBiomaterialsCandida tropicalis03 medical and health sciencesAmphotericin BAmphotericin BmedicineCandida tropicalisTitaniumbiologyStrain (chemistry)ChemistryBiofilmBiomaterialGeneral Medicinebiology.organism_classificationBiofilmsAnidulafunginPTFEAntagonismmedicine.drugThe International journal of artificial organs
researchProduct

Culture into perfusion-assisted bioreactor promotes valve-like tissue maturation of recellularized pericardial membrane

2020

Derivation of tissue-engineered valve replacements is a strategy to overcome the limitations of the current valve prostheses, mechanical, or biological. In an effort to set living pericardial material for aortic valve reconstruction, we have previously assessed the efficiency of a recellularization strategy based on a perfusion system enabling mass transport and homogenous distribution of aortic valve-derived “interstitial” cells inside decellularized pericardial material. In the present report, we show that alternate perfusion promoted a rapid growth of valve cells inside the pericardial material and the activity of a proliferation-supporting pathway, likely controlled by the YAP transcrip…

0301 basic medicineAortic valvelcsh:Diseases of the circulatory (Cardiovascular) systemCardiovascular Medicine030204 cardiovascular system & hematologyProtein contentBiomaterials03 medical and health sciences0302 clinical medicineBioreactormedicinePericardiumEngineered tissueOriginal ResearchDecellularizationChemistryPerfusion systemBiomaterialValve interstitial cell030104 developmental biologymedicine.anatomical_structureMembranelcsh:RC666-701Valve implantCardiology and Cardiovascular MedicinePerfusionPericardiumBiomedical engineering
researchProduct