Search results for "biomedical"

showing 8 items of 2328 documents

Formation of Si/SiO2 Luminescent Quantum Dots From Mesoporous Silicon by Sodium Tetraborate/Citric Acid Oxidation Treatment

2019

We propose a rapid, one-pot method to generate photoluminescent (PL) mesoporous silicon nanoparticles (PSiNPs). Typically, mesoporous silicon (meso-PSi) films, obtained by electrochemical etching of monocrystalline silicon substrates, do not display strong PL because the silicon nanocrystals (nc-Si) in the skeleton are generally too large to display quantum confinement effects. Here we describe an improved approach to form photoluminescent PSiNPs from meso-PSi by partial oxidation in aqueous sodium borate (borax) solutions. The borax solution acts to simultaneously oxidize the nc-Si surface and to partially dissolve the oxide product. This results in reduction of the size of the nc-Si core …

theranosticsMaterials sciencePassivationSiliconSilicon dioxideOxidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencessilicon nanoparticles (SiNPs)Monocrystalline siliconlcsh:Chemistrychemistry.chemical_compoundporous silicon (PS)Silicic acidOriginal ResearchAqueous solutionGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemistryChemical engineeringchemistrylcsh:QD1-999photoluminescencebiomedical application0210 nano-technologyMesoporous materialFrontiers in Chemistry
researchProduct

Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites

2012

A better understanding of the remodeling process of postextraction sockets is essential in dental treatment planning. The aim of this study was to evaluate whether confocal laser scanning microscopy (CLSM) can be applied to imaging contour changes of postextraction sites, as well as to its quantification with image analysis of obtained three-dimensional images. This work describes a new application of the CLSM technique. The system used was the OLS3100-USS, LEXT model (Olympus((R))). CLSM was used for the surface analysis of the extraction site. The measurements taken with CLSM were: (1) mesio-distal distance, (2) alveolar ridge thickness, and (3) vestibular and lingual alveolar ridge heigh…

tooth extractionMicroscopy ConfocalHistologyMaterials sciencebusiness.industryfungiDentistryalveolar changesStatistics NonparametricINGENIERIA QUIMICAsocket healingMedical Laboratory TechnologyImaging Three-DimensionalExtraction siteAlveolar ProcessConfocal laser scanning microscopyAlveolar ridgeHumansTooth SocketAnatomybusinessCLSMInstrumentationBiomedical engineeringMicroscopy Research and Technique
researchProduct

Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance.

2004

Crop loss due to viral diseases is still a major problem for agriculture today. We present a strategy to achieve virus resistance based on the expression of single-chain Fv fragments (scFvs) against a conserved domain in a plant viral RNA-dependent RNA polymerase (RdRp), a key enzyme in virus replication. The selected scFvs inhibited complementary RNA synthesis of different plant virus RdRps in vitro and virus replication in planta. Moreover, the scFvs also bound to the RdRp of the distantly related hepatitis C virus. T(1) and T(2) progeny of transgenic lines of Nicotiana benthamiana expressing different scFvs either in the cytosol or in the endoplasmic reticulum showed varying degrees of r…

virusesHepatitis C virusAmino Acid MotifsBiomedical EngineeringNicotiana benthamianaBioengineeringmedicine.disease_causeAntibodies ViralVirus ReplicationApplied Microbiology and BiotechnologyVirusPlant VirusesTombusviruschemistry.chemical_compoundRNA polymerasePlant virusTobaccomedicinePlant DiseasesGeneticsbiologyfungifood and beveragesbiology.organism_classificationPlants Genetically ModifiedRNA-Dependent RNA PolymeraseVirologyTombusviridaechemistryViral replicationMolecular MedicineSingle-Chain AntibodiesBiotechnologyNature biotechnology
researchProduct

Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging

2018

International audience; Nowadays, monitoring of volatile organic compounds (VOCs) is very important in various domains. In this work, we aimed to develop sensitive olfactory biosensors using odorant binding proteins (OBPs) as sensing materials. Three rat OBP3 derivatives with customized binding properties were designed and immobilized on the same chip for the detection of VOCs in solution by surface plasmon resonance imaging (SPRi). We demonstrated that the proteins kept their binding properties after the immobilization under optimized conditions. The obtained olfactory biosensors exhibited very low limits of detection in both concentration (200pM of beta-ionone) and in molecular weight of …

volatile organic compoundConformational change[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOdorant bindingBiomedical EngineeringBiophysicsBiosensing Techniques02 engineering and technologyReceptors Odorant01 natural sciencesHexanal[SPI]Engineering Sciences [physics]chemistry.chemical_compoundElectrochemistryAnimalsVolatile organic compoundComputingMilieux_MISCELLANEOUSDetection limitchemistry.chemical_classificationVolatile Organic CompoundsChromatographyChemistry010401 analytical chemistryGeneral MedicineRepeatabilitySurface Plasmon Resonance021001 nanoscience & nanotechnologyRats0104 chemical sciencesSmellsurface plasmon resonance imagingofactory biosensor0210 nano-technologySelectivityBiosensorodorant binding proteinsBiotechnologyBiosensors and Bioelectronics
researchProduct

Force transmission and interactions between synergistic muscles

2023

The classical view of muscles as independent motors has been challenged over the past decades. An alternative view has emerged in which muscles are not isolated but embedded in a three-dimensional connective tissue network that links them to adjacent muscles and other non-muscular structures in the body. Animal studies showing that the forces measured at the distal and proximal ends of a muscle are not equal have provided undisputable evidence that these connective tissue linkages are strong enough to serve as an extra pathway for muscular force transmission. In this historical review, we first introduce the terminology and anatomy related to these pathways of muscle force transmission and …

vuorovaikutusMuscle mechanicsRehabilitationBiomedical EngineeringBiophysicstorquelihaksetsidekudoksetmuscle mechanicsmyofascialepimuscularTorqueEpimuscularOrthopedics and Sports Medicinevoimantuotto (fysiologia)faskiatbiomekaniikkaConnective tissueFasciaMyofascialfasciaconnective tissue
researchProduct

Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron

2013

Rapid analytical methods enabling the determination of diverse targets are essential in a number of research areas, from clinical diagnostics to feed and food quality and safety. Herein, the development of a quantitative immunochromatographic assay for the detection of the synthetic phytoregulator forchlorfenuron (CPPU) is described. The competitive lateral flow immunoassay (LFIA) was based on the immobilization onto a nitrocellulose membrane of an ovalbumin-CPPU conjugate (test line) and on the use of an immunodetection ligand consisting of carbon nanoparticles labeled with an anti-CPPU monoclonal antibody through interaction with a secondary antibody. The presence of CPPU in horticultural…

water samplesCarbon nanoparticlesAnalyteImmunoreactive stripsPyridinesCarbon NanoparticlesBiomedical EngineeringBiophysicsEnzyme-Linked Immunosorbent AssayCPPUBiosensing Techniquesantibody-based immunoassayForchlorfenuronbiosensorHigh-performance liquid chromatographychemistry.chemical_compoundElectrochemistryImmunoassayDetection limitvalidationChromatographyChemistrystrip testPhenylurea Compoundslateral flow immunoassayAntibodies Monoclonalcomputer image-analysisGeneral MedicineCarbonHaptendipstick assayBBP Bioconversionrapid detectionImmunosensingNanoparticlessensitive detectionBiosensorNitrocelluloseBiotechnologyConjugate
researchProduct

Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry

2021

Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30–50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-se…

xylenol-orangeMaterials sciencePolymers and Plasticspoly-vinyl alcoholScienceDose profileBioengineeringGeneral. Including alchemyReviewRadiation01 natural sciences030218 nuclear medicine & medical imagingIonizing radiationBiomaterials03 medical and health sciencesMagnetic resonance imaging0302 clinical medicineQD1-650103 physical sciencesthree-dimensional dosimetryDosimetryIrradiationQD1-999QD146-197Optical tomography010308 nuclear & particles physicsbusiness.industryOrganic ChemistryQpolyacrylamide gelChemistrySpectrophotometryAbsorbed doseglutaraldehydeRadiation protectionLuminescencebusinessInorganic chemistryBiomedical engineeringferrous sulfateGels
researchProduct

Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs).

2020

Microrobots and metal–organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF‐based small‐scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro‐ and nanoswimmers including small‐scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selec…

zeolitic imidazolate frameworksMaterials scienceBiomedical EngineeringPharmaceutical ScienceNanotechnology02 engineering and technology010402 general chemistrybiodegradation01 natural sciencesBiomaterialsmetal–organic frameworksDrug Delivery SystemsNeoplasmsHumansMetal-Organic FrameworksBiodegradable metal021001 nanoscience & nanotechnologyControlled release0104 chemical sciencesMagnetic FieldsTargeted drug deliverySelective degradationDoxorubicindrug deliveryDrug deliverybiodegradation; drug delivery; metal–organic frameworks; microrobots; zeolitic imidazolate frameworksChemotherapeutic drugs0210 nano-technologymicrorobotsAdvanced healthcare materials
researchProduct