Search results for "biomimetic"
showing 10 items of 117 documents
A spiking network for body size learning inspired by the fruit fly
2013
The concept of peripersonal space is an interesting research topics for psychologists, neurobiologists and for robotic applications. A living being can learn the representation of its own body to take the correct behavioral decision when interacting with the world. To transfer these important learning mechanisms on bio-robots, simple and efficient solutions can be found in the insect world. In this paper a neural-based model for body-size learning is proposed taking into account the results obtained in experiments with fruit flies. Simulations and experimental results on a roving platform are reported and compared with the biological counterpart.
Selective Change Driven Imaging: A Biomimetic Visual Sensing Strategy
2011
Selective Change Driven (SCD) Vision is a biologically inspired strategy for acquiring, transmitting and processing images that significantly speeds up image sensing. SCD vision is based on a new CMOS image sensor which delivers, ordered by the absolute magnitude of its change, the pixels that have changed after the last time they were read out. Moreover, the traditional full frame processing hardware and programming methodology has to be changed, as a part of this biomimetic approach, to a new processing paradigm based on pixel processing in a data flow manner, instead of full frame image processing.
Can structural and bioactivity gradients mitigate intima hyperplasia on a small diameter tissue-engineered vascular graft?
Modification of xenogenic bone substitute materials - effects on the early healing cascadein vitro
2013
Introduction Initial platelet activation with subsequent cytokine release at the defect site plays a crucial role in tissue integration. The aim of this study was to evaluate the influence of topographic and biomimetic collagen modifications of a xenogenic bone substitute material (BSM) on in vitro platelet activation and cytokine release. Material and Methods Three types of xenogenic BSM were used. Two BSM with different levels of granularity (large granule BSM [XBSM/L], small granule BSM [XBSM/S]) and a BSM with collagen (XBSM/C). All three samples were incubated with platelet concentrate of four healthy volunteers at room temperature for 15 min. For all groups, highly thrombogenic collag…
Synthesis and preliminary in vivo evaluation of well-dispersed biomimetic nanocrystalline apatites labeled with positron emission tomographic imaging…
2015
In recent years, biomimetic synthetic apatite nanoparticles (AP-NPs), having chemical similarity with the mineral phase of bone, have attracted a great interest in nanomedicine as potential drug carriers. To evaluate the therapeutic perspectives of AP-NPs through the mechanisms of action and organs they interact with, the noninvasive monitoring of their in vivo behavior is of paramount importance. To this aim, here the feasibility to radiolabel AP-NPs ("naked" and surface-modified with citrate to reduce their aggregation) with two positron emission tomographic (PET) imaging agents ([F-18]NaF and Ga-68-NO(2)AP(BP)) was investigated. [F-18]NaF was used for the direct incorporation of the radi…
Template-Assembled Synthetic G-Quartets (TASQ) hydrosolubles : du ligand de quadruplexes d'ADN et d'ARN à la plateforme catalytique
2013
Natural G-quartets, a cyclic and coplanar array of four guanine residues held together via Hoogsteen H-bond network, have recently received much attention due to their involvement in G-quadruplex-DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events (chromosomal stability, regulation of gene expression). Besides this, synthetic G-quartets, which artificially mimic native G-quartets, have also been widely studied for their involvement in nanotechnological applications (i.e. nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G-quartets, also named template-assembled synthetic G-quartet (TASQ), have been m…
Gene therapy with growth factors for periodontal tissue engineering : a review
2011
The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microen…
Salt release monitoring with specific sensors in "in vitro" oral and digestive environments from soft cheeses
2012
International audience; The objective of the present work is to demonstrate the interest and the feasibility of the measurement of NaCl concentrations in soft cheeses and in particular an in vitro digestion process by the use of chemical sensors. The analyzed matrices were the commercial Italian mozzarella cheeses and domestic cheese base models. The classification of mozzarellas was performed according to their salinity, while the breakdown of cheese base models has been followed both at initial steps of digestion in artificial mouth dispositive mimicking the oral sphere and in a gut-imitating digester (TIM-1). During the breakdown of soft cheese in the digester, the estimated values for N…
The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…
2013
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…
Artificial Biosystems by Printing Biology
2020
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection betwee…