Search results for "biomimetic"

showing 10 items of 117 documents

Computational methods and theory for ion channel research

2022

Ion channels are fundamental biological devices that act as gates in order to ensure selective ion transport across cellular membranes; their operation constitutes the molecular mechanism through which basic biological functions, such as nerve signal transmission and muscle contraction, are carried out. Here, we review recent results in the field of computational research on ion channels, covering theoretical advances, state-of-the-art simulation approaches, and frontline modeling techniques. We also report on few selected applications of continuum and atomistic methods to characterize the mechanisms of permeation, selectivity, and gating in biological and model channels.

continuum modelsmolecular dynamicselectivityIon channels; biomimetic nanopores; conductance; continuum models; gating; machine learning; molecular dynamics; rare events; selectivityGeneral Physics and AstronomyArticlemolecular dynamicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)rare eventsmachine learningcontinuum modelIon channelsgatingddc:530biomimetic nanoporesIon channelbiomimetic nanoporerare eventconductance
researchProduct

Visualization of RNA-Quadruplexes in Live Cells

2015

Visualization of DNA and RNA quadruplex formation in human cells was demonstrated recently with different quadruplex-specific antibodies. Despite the significant interest in these immunodetection approaches, dynamic detection of quadruplex in live cells remains elusive. Here, we report on NaphthoTASQ (N-TASQ), a next-generation quadruplex ligand that acts as a multiphoton turn-on fluorescent probe. Single-step incubation of human and mouse cells with N-TASQ enables the direct detection of RNA-quadruplexes in untreated cells (no fixation, permeabilization or mounting steps), thus offering a unique, unbiased visualization of quadruplexes in live cells.

Static ElectricityMelanoma ExperimentalLigands010402 general chemistryG-quadruplex01 natural sciencesBiochemistryCatalysisMice03 medical and health scienceschemistry.chemical_compoundColloid and Surface ChemistryBiomimeticsCationsCell Line TumorFluorescence Resonance Energy TransferAnimalsHumans[CHIM]Chemical Sciences[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyheterocyclic compoundsComputingMilieux_MISCELLANEOUSChelating AgentsFluorescent Dyes030304 developmental biologyPhotons[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesbiologyChemistryRNADNAGeneral ChemistryFluorescenceMolecular biology3. Good health0104 chemical sciencesCell biologyVisualizationG-QuadruplexesFörster resonance energy transferMicroscopy FluorescenceCell cultureMCF-7 Cellsbiology.proteinRNAAntibodyDNAJournal of the American Chemical Society
researchProduct

Physics of the nuclear pore complex: Theory, modeling and experiment

2021

Abstract The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular “nanomachine” known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the…

Stochastic transportMolecular modelingGeneral Physics and AstronomyComputational biologyMolecular dynamics01 natural sciencesGenomeArticleDiffusionNanochannels0103 physical sciencesotorhinolaryngologic diseasesmedicineNuclear pore010306 general physicsPhysicsComputational modelIntrinsically disordered proteins010308 nuclear & particles physicsCompartmentalization (psychology)Nuclear pore complexCell nucleusCrowdingmedicine.anatomical_structureCytoplasmMultivalencyBiomimeticNucleusFunction (biology)Physics Reports
researchProduct

Advances in surfaces and osseointegration in implantology. Biomimetic surfaces

2015

The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and …

medicine.medical_treatmentDentistryintegrationReviewcoatingsApatitelaw.inventionlawBiomimetic MaterialsImplants surfacesbioactive titaniumBiomimetics surfacesAmorphous calcium phosphateComposite materialCrystallizationDental implantTitaniumSuperfícies biomimètiquesImplantes dentalesSuperfícies d’implants:CIENCIAS MÉDICAS [UNESCO]Ciencias de la saludbone-formation adjacentSuperficies biomiméticasvisual_artUNESCO::CIENCIAS MÉDICASvisual_art.visual_art_mediumacidvivoLayer (electronics)biomimetics surfacesTitaniumMaterials scienceSurface Propertiesproliferationchemistry.chemical_elementOdontología616.3in-vitro:Enginyeria dels materials [Àrees temàtiques de la UPC]OsseointegrationBacterial colonizationfibronectinOsseointegrationmedicineAnimalsHumansGeneral DentistryBlood CoagulationDental ImplantsOral Medicine and PathologyImplants dentalsbusiness.industryDental implantsosseointegrationTitaniimplants surfacesSuperficies de implantesOtorhinolaryngologychemistryOsteointegraciónSurgerybusinessOsteointegració
researchProduct

Promotion of osteogenic cell response using quasicovalent immobilized fibronectin on titanium surfaces: introduction of a novel biomimetic layer syst…

2012

Purpose Despite the undeniable potential of cell adhesion molecules such as fibronectin to support osteogenic cell responses and consecutive dental implant healing, the most beneficial mode of application onto titanium implant surfaces still requires investigation. Unspecific fibronectin adsorption on titanium dioxide (TiO2) surfaces can result in low-loading, high-desorption rates and protein–metal interactions with impaired biologic activity. The aim of the present study was to monitor the osteogenic cell responses (cell adhesion, proliferation, and differentiation) specifically to fibronectin biofunctionalized TiO2. Materials and Methods An innovative biomimetic streptavidin-biotin layer…

Time FactorsCellular differentiationOsteocalcinCell Culture TechniquesBiotinBiocompatible MaterialsCore Binding Factor Alpha 1 SubunitCell LineCyclin D1Biomimetic MaterialsOsteogenesisCell AdhesionMedicineHumansCyclin D1Cell adhesionCell ProliferationTitaniumOsteoblastsbiologyCell adhesion moleculebusiness.industryIntegrin beta1Cell DifferentiationAdhesionSilanesAlkaline PhosphataseFibronectinsFibronectinImmobilized ProteinsPhenotypeOtorhinolaryngologyBiotinylationVitamin B Complexbiology.proteinBiophysicsAlkaline phosphataseSurgeryAdsorptionStreptavidinOral SurgerybusinessJournal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons
researchProduct

Solid Phases as Protective Environments for Biomimetic Catalysts

2014

chemistry.chemical_classificationSolid-phase synthesisMaterials sciencechemistryChemical engineeringBiomimetic synthesisInorganic chemistrySolid phasesBioinorganic chemistryPolymerCatalysis
researchProduct

Chemical self-organization in self-assembling biomimetic systems

2009

Abstract Far-from-equillibrium oscillating chemical reactions are among the simplest systems showing complex behaviors and emergent properties. This class of reactions is often employed to mimic and understand the mechanisms of a great variety of biological processes. In this context, pattern formation due to the coupling between reaction and transport phenomena represent an active and promising research area. In this paper, we present results coming from experiments where we tried to blend the structural properties of self-assembled matrixes (sodium dodecyl sulphate micelles and phospholipid bilayers) together with the evolutive peculiarities of the Belousov–Zhabotinsky reaction. A series …

Materials science{CHEMICAL} {OSCILLATORS}Pattern formation{SELF-ORGANIZATION}Context (language use)Chemical reaction{CONVECTION}surface tension{CHEMICAL} {OSCILLATORS}; {CONVECTION}; {DIFFUSION}; Lipid systems; {MICELLES}; Self-assembly; {SELF-ORGANIZATION}; surface tensionSelf-organization Self-assembly Belousov–Zhabotinsky reaction Chemical oscillators Turing structures Biomimetic systems Lipid systems Micelles Surface tension Diffusion Convection{MICELLES}Settore CHIM/02 - Chimica FisicaSelf-organizationMICELLESEcological ModelingLipid systemsCHEMICAL OSCILLATORS; CONVECTION; DIFFUSION; Lipid systems; MICELLES; Self-assembly; SELF-ORGANIZATION; surface tensionSelf-assemblySELF-ORGANIZATIONCHEMICAL OSCILLATORS{DIFFUSION}DIFFUSIONCoupling (physics)Belousov–Zhabotinsky reactionChemical physicsCONVECTIONSelf-assemblyTransport phenomena
researchProduct

Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: A case study on the shell of the bivalve Glycyme…

2016

11 pages; International audience; The structural organization of the palliostracum—the dominant part of the shell which is formed by the mantle cells—of Glycymeris glycymeris (Linné 1758) is comprised of five hierarchical levels with pronounced structural commonalities and deviations from other crossed-lamellar shells. The hierarchical level known as second order lamellae, present within other crossed-lamellar shells, is absent highlighting a short-coming of the currently used nomenclature. On the mesoscale, secondary microtubules penetrate the palliostracum and serve as crack arrestors. Moreover, the growth lamellae follow bent trajectories possibly impacting crack propagation, crack defle…

0301 basic medicineGlycymerisStructural organizationMaterials sciencebiologyMechanical Engineeringcrystal growthtoughnessFracture mechanicsGeometry02 engineering and technology[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterials021001 nanoscience & nanotechnologyCondensed Matter Physicsbiology.organism_classification03 medical and health sciencesCrystallography030104 developmental biologybiomimetic (assembly)Mechanics of MaterialsHierarchical organizationGeneral Materials ScienceLamellar structure0210 nano-technologyBiomineralizationJournal of Materials Research
researchProduct

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

2019

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

Biomimetic materialsMaterials scienceApplied MathematicsMechanical Engineeringmedicine.medical_treatmentPhysics::Medical PhysicsConstitutive equationIsotropyContext (language use)02 engineering and technology021001 nanoscience & nanotechnologyPower lawCranioplastyBiomimetic materials Cranioplasty Fractional calculus Isotropic hereditariness Power-law hereditariness020303 mechanical engineering & transports0203 mechanical engineeringMechanics of Materialsvisual_artvisual_art.visual_art_mediummedicineCeramicComposite material0210 nano-technologySettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Applying Biomimicry to Cities: The Forest as Model for Urban Planning and Design

2021

International audience; The idea of applying biomimicry to cities is attracting increasing attention as a way of achieving sustainability. Undoubtedly the most frequently evoked natural model in this context is the forest, though it has not yet been investigated with any great scientific rigour. To overcome this lacuna, we provide: first, a justification of the model of the forest via what we call the arguments from “fittingness”, “scale”, and “complexity”; second, an exploration of various key innovations made possible by this model in the fields of urban planning, urban water systems, urban energy and transport systems, and urban food and nutrient systems.

020209 energy0211 other engineering and technologiesBiomimetic architectureContext (language use)02 engineering and technologyBiomimetic urbanismRigourUrban planning11. Sustainability0202 electrical engineering electronic engineering information engineeringEconomicsEnvironmental planningSustainable cities021106 design practice & managementEco-cities[SDE.IE]Environmental Sciences/Environmental EngineeringScale (chemistry)[SHS.PHIL]Humanities and Social Sciences/PhilosophyEco-cities15. Life on landNature-based cities[SPI.GCIV]Engineering Sciences [physics]/Civil Engineering13. Climate actionSustainabilityBiomimeticsUrban water
researchProduct