Search results for "biophysics"
showing 10 items of 3515 documents
Virus-host interactome: Putting the accent on how it changes
2017
[EN] Viral infections are extremely complex processes that could only be well understood by precisely characterizing the interaction networks between the virus and the host components. In recent years, much effort has gone in this directionwith the aimof unveiling themolecular basis of viral pathology. These networks are mostly formed by viral and host proteins, and are expected to be dynamic bothwith time and space (i.e., with the progression of infection, as well as with the virus and host genotypes; what we call plastodynamic). This largely overlooked spatio-temporal evolution urgently calls for a change both in the conceptual paradigms and experimental techniques used so far to characte…
Biophysics of high density nanometer regions extracted from super-resolution single particle trajectories: application to voltage-gated calcium chann…
2019
AbstractThe cellular membrane is very heterogenous and enriched with high-density regions forming microdomains, as revealed by single particle tracking experiments. However the organization of these regions remain unexplained. We determine here the biophysical properties of these regions, when described as a basin of attraction. We develop two methods to recover the dynamics and local potential wells (field of force and boundary). The first method is based on the local density of points distribution of trajectories, which differs inside and outside the wells. The second method focuses on recovering the drift field that is convergent inside wells and uses the transient field to determine the…
Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing
2016
AbstractCells’ ability to sense mechanical cues in their environment is crucial for fundamental cellular processes, leading defects in mechanosensing to be linked to many diseases. The actin cross-linking protein Filamin has an important role in the conversion of mechanical forces into biochemical signals. Here, we reveal how mutations in Filamin genes known to cause Larsen syndrome and Frontometaphyseal dysplasia can affect the structure and therefore function of Filamin domains 16 and 17. Employing X-ray crystallography, the structure of these domains was first solved for the human Filamin B. The interaction seen between domains 16 and 17 is broken by shear force as revealed by steered mo…
Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases
2017
AbstractParvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison w…
Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.
2017
Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BA…
Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy
2020
Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability i…
Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures
2019
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (alpha-La). alpha-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize alpha-La-membrane mechanisms of interaction and alpha-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imag…
Shell palaeoproteomics: first application of peptide mass fingerprinting for the rapid identification of mollusc shells in archaeology.
2020
10 pages; International audience; Molluscs were one of the most widely-used natural resources in the past, and their shells are abundant among archaeological findings. However, our knowledge of the variety of shells that were circulating in prehistoric times (and thus their socio-economic and cultural value) is scarce due to the difficulty of achieving taxonomic determination of fragmented and/or worked remains. This study aims to obtain molecular barcodes based on peptide mass fingerprints (PMFs) of intracrystalline proteins, in order to obtain shell identification. Palaeoproteomic applications on shells are challenging, due to low concentration of molluscan proteins and an incomplete unde…
2019
The effects of ionotropic γ-aminobutyric acid receptor (GABA-A, GABAA) activation depends critically on the Cl−-gradient across neuronal membranes. Previous studies demonstrated that the intracellular Cl−-concentration ([Cl−]i) is not stable but shows a considerable amount of activity-dependent plasticity. To characterize how membrane properties and different molecules that are directly or indirectly involved in GABAergic synaptic transmission affect GABA-induced [Cl−]i changes, we performed compartmental modeling in the NEURON environment. These simulations demonstrate that GABA-induced [Cl−]i changes decrease at higher membrane resistance, revealing a sigmoidal dependency between both par…
FRET biosensor allows spatio-temporal observation of shear stress-induced polar RhoGDIα activation
2018
Rho GDP-dissociation inhibitor α (RhoGDIα) is a known negative regulator of the Rho family that shuts off GDP/GTP cycling and cytoplasm/membrane translocation to regulate cell migration. However, to our knowledge, no reports are available that focus on how the RhoGDIα-Rho GTPases complex is activated by laminar flow through exploring the activation of RhoGDIα itself. Here, we constructed a new biosensor using fluorescence resonance energy transfer (FRET) technology to measure the spatio-temporal activation of RhoGDIα in its binding with Rho GTPases in living HeLa cells. Using this biosensor, we find that the dissociation of the RhoGDIα-Rho GTPases complex is increased by shear stress, and i…