Search results for "biosensing"
showing 10 items of 108 documents
Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis
2015
We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in “the nanoworld”. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possib…
Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines
2006
[EN] Pyrylium-containing mesoporous materials have been used for the chromo-fluorogenic sensing of biogenic amines in an aqueous environment.
Electrochemical probe for the monitoring of DNA-protein interactions.
2010
Self-assembly of thiol-terminated oligonucleotides on gold substrates provides a convenient way for DNA-functionalized surfaces. Here we describe the development of an electrochemical assay for the detection of DNA-protein interactions based on the modification of the electrochemical response of methylene blue (MB) intercalated in the DNA strands. Using a functionalized electrode with double stranded DNA carrying T3 RNA polymerase binding sequence, we show a substantial attenuation of the current upon the DNA-protein interaction. Moreover, a Langmuir binding isotherm for T3 RNA polymerase (T3 Pol) gives a dissociation constant K(D) equal to 0.46+/-0.23 microM. Such value is 100 times lower …
Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus
2017
[EN] An autoantigen piezoelectric sensor to quantify specific circulating autoantibodies in human serum is developed. The sensor consisted on a quartz crystal microbalance with dissipation monitoring (QCM-D) where TRIM21 and TROVE2 autoantigens were covalently immobilized, allowing the selective determination of autoantibodies for diagnosis and prognosis of Systemic Lupus Erythematosus (SLE). The sensitivity of the biosensor, measured as IC50 value, was 1.51 U/mL and 0.32 U/mL, for anti-TRIM21 and anti-TROVE2 circulating autoantibodies, respectively. The sensor is also able to establish a structural interaction fingerprint pattern or profile of circulating autoantibodies, what allows scorin…
Biosensor Analysis of β2-Glycoprotein I–Reactive Autoantibodies: Evidence for Isotype-Specific Binding and Differentiation of Pathogenic from Infecti…
2007
Abstract Background: For the laboratory diagnosis of the antiphospholipid syndrome (APS) we developed a biosensor with the ability to distinguish between disease-relevant anti-β2-glycoprotein I (β2GPI) autoantibodies (anti-β2GPI) and pathogen-specific β2GPI cross-reactive antibodies that occur transiently during infections. Methods: We used a surface plasmon resonance (SPR) biosensor device. For the detection of anti-β2GPI in serum samples, affinity-purified human β2GPI was covalently attached to a functionalized n-alkanethiol self-assembling monolayer on the biosensor chip. After verifying the specificity of the biosensor system with a panel of monoclonal antibodies to β2GPI, we analyzed s…
Enhanced Gene Delivery by Avidin-Displaying Baculovirus
2004
Flexible alteration of virus surface properties would be beneficial for enhanced and targeted gene delivery. A useful approach could be based on a high-affinity receptor–ligand pair, such as avidin and biotin. In this study, we have constructed an avidin-displaying baculovirus, Baavi. Avidin display was expected to enhance cell transduction due to the high positive charge of avidin in physiological pH and to provide a binding site for covering the virus with desired biotinylated ligands. Successful incorporation of avidin on the virus envelope was detected by immunoblotting and electron microscopy. Multiple biotin-binding sites per virus were detected with fluorescence-correlation spectrosc…
A Multiple Local Models Approach to Accuracy Improvement in Continuous Glucose Monitoring
2011
Continuous glucose monitoring (CGM) devices estimate plasma glucose (PG) from measurements in compartments alternative to blood. The accuracy of currently available CGM is yet unsatisfactory and may depend on the implemented calibration algorithms, which do not compensate adequately for the differences of glucose dynamics between the compartments. Here we propose and validate an innovative calibration algorithm for the improvement of CGM performance.CGM data from GlucoDay(®) (A. Menarini, Florence, Italy) and paired reference PG have been obtained from eight subjects without diabetes during eu-, hypo-, and hyperglycemic hyperinsulinemic clamps. A calibration algorithm based on a dynamic glo…
Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals
2020
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotrop…
Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces.
2001
The control of neuronal cell position and outgrowth is of fundamental interest in the development of applications ranging from cellular biosensors to tissue engineering. We have produced rectangular networks of functional rat hippocampal neurons on silicon oxide surfaces. Attachment and network formation of neurons was guided by a geometrical grid pattern of the adhesion peptide PA22-2 which matches in sequence a part of the A-chain of laminin. PA22-2 was applied by contact printing onto the functionalised silicon oxide surface and was immobilised by hetero-bifunctional cross-linking with sulfo-GMBS. Geometric pattern matching was achieved by microcontact printing using a polydimethylsiloxa…
Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging : quantifying neuronal dysfunction in neuroinflammation
2013
Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Forster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lif…