Search results for "birefringence"

showing 10 items of 133 documents

Interpretation of negative birefringence observed in strong-field optical pump-probe experiments: High-order Kerr and plasma grating effects

2013

The analysis of negative birefringence optically induced in major air components (Loriot et al., [1, 2]) is revisited in light of the recently reported plasma grating-induced phase-shift effect predicted for strong field pump-probe experiments (Wahlstrand and Milchberg, [3]). The nonlinear birefrin- gence induced by a short and intense laser pulse in argon is measured by femtosecond time-resolved polarimetry. The experiments are performed with degenerate colors, where the pump and probe beam share the same spectrum, or with two different colors and non-overlapping spectra. The in- terpretation of the experimental results is substantiated using a numerical 3D+1 model accounting for nonlinear…

PhysicsKerr effectBirefringencebusiness.industryFOS: Physical sciencesPhysics::OpticsLaserAtomic and Molecular Physics and Opticslaw.inventionOptical pumpingOpticslawIonizationFemtosecondAtomic physicsbusinessSelf-phase modulationPhase conjugationPhysics - OpticsOptics (physics.optics)Physical Review A
researchProduct

Generalized formulation and symmetry properties of reciprocal nonabsorbing polarization devices: Application to liquid-crystal displays

2000

We present a general formulation based on the Jones-matrix theory for reciprocal nonabsorbing polarization devices, including polarization interference filters and liquid-crystal displays. The development of this formulation is based on general symmetry conditions that relate the Jones matrix when the device is illuminated from the front side and from the back side. The application to liquid-crystal displays results in a constraint of the Jones-matrix elements, which represents a generalization of the existing models that explain their modulation properties.

PhysicsLiquid crystal devicesLiquid-crystal displayPolarization rotatorBirefringencebusiness.industryPolarization (waves)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticslawComputer Vision and Pattern RecognitionCrystal opticsbusinessReciprocal
researchProduct

Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber

1999

International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.

PhysicsOptical fiberBirefringence[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryTerahertz radiationOptical communicationPhysics::OpticsStatistical and Nonlinear PhysicsPolarization (waves)01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticsModulational instabilityOpticsOrthogonal coordinateslaw0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic010306 general physicsbusinessLaser beams
researchProduct

Efficient light-induced phase transitions in halogen-bonded liquid crystals

2016

Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate tha…

Phase transitionMaterials scienceGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistry02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundDifferential scanning calorimetryLiquid crystalMaterials ChemistryMoleculeHalogen Bonding Liquid Crystals Photoresponsive Supramolecular Chemistryta216ta116ta215Birefringenceta114General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyAzobenzenechemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologieAbsorption (chemistry)0210 nano-technology
researchProduct

Electric Polarization of Onsager Fluids. II. Birefringence. 2. Molar Kerr Constants of Binary Solutions

1994

MolarPolarization densityMaterials scienceBirefringenceCondensed matter physicsGeneral Physics and AstronomyBinary numberActa Physica Polonica A
researchProduct

Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models

2008

We have used a fully vectorial model based on two coupled nonlinear Schrodinger equations to study mode locking and pulse generation initiated and stabilized by nonlinear polarization evolution in a stretched pulse, double-clad, Yb-doped, fiber laser. The model takes explicitly into account gain saturation, finite amplification bandwidth, Kerr-induced self- and cross-phase modulations, group velocity dispersion, polarization control, and linear birefringence. Complete maps versus the orientation of intra-cavity wave-plates have been established. They comprise a large variety of pulse regimes that can be simply obtained by turning the intracavity wave-plate: stable single pulse per round tri…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Polarization rotatorBirefringencebusiness.industryPhysics::Optics02 engineering and technologyPolarization (waves)01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticsNonlinear system020210 optoelectronics & photonicsOpticsMode-lockingFiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringGroup velocitySelf-phase modulationbusinessComputingMilieux_MISCELLANEOUSFiber and Integrated Optics
researchProduct

Nonintrusive monitoring and quantitative analysis of strong laser-field-induced impulsive alignment

2004

We report the observation of impulsive alignment of $\mathrm{C}{\mathrm{O}}_{2}$ molecules produced through their interaction with a nonresonant, strong laser pulse. The periodic alignment is monitored using a polarization technique generally employed in optical Kerr effect experiments; the birefringence produced by alignment of the molecular sample is measured with a weak pulse, time-delayed with respect to the alignment pulse. The technique provides a signal proportional to $⟨{\mathrm{cos}}^{2}\phantom{\rule{0.2em}{0ex}}\ensuremath{\theta}⟩\ensuremath{-}\frac{1}{3}$, where $\ensuremath{\theta}$ is the polar angle between the molecular axis and the strong-field polarization axis. Experimen…

DYNAMICSPhysicsI-2BirefringenceKerr effectWave packetWAVE-PACKETSALIGNING MOLECULESPOLARIZABILITYPolarization (waves)Electromagnetic radiationAtomic and Molecular Physics and OpticsPULSESSchrödinger equationMOLECULAR ALIGNMENTMOLECULESsymbols.namesakeREVIVAL STRUCTURESPolarizabilityIonizationQuantum mechanicssymbolsAtomic physicsPhysical Review A
researchProduct

Birefringent porous silicon membranes for optical sensing

2012

In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model …

inorganic chemicalsSiliconMaterials scienceSiliconTransducerschemistry.chemical_elementPorous siliconcomplex mixturesLight scatteringOpticsAnisotropyPhotonic crystalBirefringenceBirefringencebusiness.industrytechnology industry and agricultureOptical DevicesMembranes ArtificialEquipment Designequipment and suppliesAtomic and Molecular Physics and OpticsRefractometryMembranechemistrybusinessRefractive indexPorosity
researchProduct

Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers

2001

Abstract The nonlinear interaction of two laser beams in normally dispersive highly birefringent optical fibers leads to a large set of fascinating physical effects such as modulational instability (MI) and stimulated Raman scattering (SRS). These two nonlinear phenomena have a positive role as a mechanism for the generation of short optical pulses and represent a drawback in fiber-optics transmissions. Indeed, we will show that an induced process of modulational instability may be exploited for the generation of THz train of vector dark solitons. The technique of frequency-resolved optical gating is used to completely characterize the intensity and phase of the dark soliton trains. On the …

PhysicsOptical fiberBirefringencebusiness.industryOrthogonal polarization spectral imagingTerahertz radiationPhase (waves)Physics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionsymbols.namesakeModulational instabilityOpticsControl and Systems EngineeringlawsymbolsSolitonElectrical and Electronic EngineeringbusinessInstrumentationRaman scatteringOptical Fiber Technology
researchProduct

Dispersive optical interface based on nanofiber-trapped atoms.

2011

We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $\sim$\,1\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.

Condensed Matter::Quantum GasesQuantum PhysicsBirefringenceMaterials scienceAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciencesPhysics::OpticsOptical densityCoupling (probability)Physics - Atomic PhysicsLaser linewidthNanofiberAtomDispersion (optics)Physics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Beam (structure)Optics (physics.optics)Physics - OpticsPhysical review letters
researchProduct