Search results for "birefringence"
showing 10 items of 133 documents
Interpretation of negative birefringence observed in strong-field optical pump-probe experiments: High-order Kerr and plasma grating effects
2013
The analysis of negative birefringence optically induced in major air components (Loriot et al., [1, 2]) is revisited in light of the recently reported plasma grating-induced phase-shift effect predicted for strong field pump-probe experiments (Wahlstrand and Milchberg, [3]). The nonlinear birefrin- gence induced by a short and intense laser pulse in argon is measured by femtosecond time-resolved polarimetry. The experiments are performed with degenerate colors, where the pump and probe beam share the same spectrum, or with two different colors and non-overlapping spectra. The in- terpretation of the experimental results is substantiated using a numerical 3D+1 model accounting for nonlinear…
Generalized formulation and symmetry properties of reciprocal nonabsorbing polarization devices: Application to liquid-crystal displays
2000
We present a general formulation based on the Jones-matrix theory for reciprocal nonabsorbing polarization devices, including polarization interference filters and liquid-crystal displays. The development of this formulation is based on general symmetry conditions that relate the Jones matrix when the device is illuminated from the front side and from the back side. The application to liquid-crystal displays results in a constraint of the Jones-matrix elements, which represents a generalization of the existing models that explain their modulation properties.
Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber
1999
International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.
Efficient light-induced phase transitions in halogen-bonded liquid crystals
2016
Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate tha…
Electric Polarization of Onsager Fluids. II. Birefringence. 2. Molar Kerr Constants of Binary Solutions
1994
Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models
2008
We have used a fully vectorial model based on two coupled nonlinear Schrodinger equations to study mode locking and pulse generation initiated and stabilized by nonlinear polarization evolution in a stretched pulse, double-clad, Yb-doped, fiber laser. The model takes explicitly into account gain saturation, finite amplification bandwidth, Kerr-induced self- and cross-phase modulations, group velocity dispersion, polarization control, and linear birefringence. Complete maps versus the orientation of intra-cavity wave-plates have been established. They comprise a large variety of pulse regimes that can be simply obtained by turning the intracavity wave-plate: stable single pulse per round tri…
Nonintrusive monitoring and quantitative analysis of strong laser-field-induced impulsive alignment
2004
We report the observation of impulsive alignment of $\mathrm{C}{\mathrm{O}}_{2}$ molecules produced through their interaction with a nonresonant, strong laser pulse. The periodic alignment is monitored using a polarization technique generally employed in optical Kerr effect experiments; the birefringence produced by alignment of the molecular sample is measured with a weak pulse, time-delayed with respect to the alignment pulse. The technique provides a signal proportional to $⟨{\mathrm{cos}}^{2}\phantom{\rule{0.2em}{0ex}}\ensuremath{\theta}⟩\ensuremath{-}\frac{1}{3}$, where $\ensuremath{\theta}$ is the polar angle between the molecular axis and the strong-field polarization axis. Experimen…
Birefringent porous silicon membranes for optical sensing
2012
In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model …
Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers
2001
Abstract The nonlinear interaction of two laser beams in normally dispersive highly birefringent optical fibers leads to a large set of fascinating physical effects such as modulational instability (MI) and stimulated Raman scattering (SRS). These two nonlinear phenomena have a positive role as a mechanism for the generation of short optical pulses and represent a drawback in fiber-optics transmissions. Indeed, we will show that an induced process of modulational instability may be exploited for the generation of THz train of vector dark solitons. The technique of frequency-resolved optical gating is used to completely characterize the intensity and phase of the dark soliton trains. On the …
Dispersive optical interface based on nanofiber-trapped atoms.
2011
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $\sim$\,1\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.