6533b7d1fe1ef96bd125d702

RESEARCH PRODUCT

Efficient light-induced phase transitions in halogen-bonded liquid crystals

Mikko PoutanenGiancarlo TerraneoAntti SiiskonenFrancisco Fernandez-palacioGiuseppe ResnatiOlli IkkalaPierangelo MetrangoloArri PriimagiMarco Saccone

subject

Phase transitionMaterials scienceGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistry02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundDifferential scanning calorimetryLiquid crystalMaterials ChemistryMoleculeHalogen Bonding Liquid Crystals Photoresponsive Supramolecular Chemistryta216ta116ta215Birefringenceta114General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyAzobenzenechemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologieAbsorption (chemistry)0210 nano-technology

description

Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators. publishedVersion Peer reviewed

10.1021/acs.chemmater.6b03460https://aaltodoc.aalto.fi/handle/123456789/23794