0000000000023296

AUTHOR

Marco Saccone

0000-0002-1768-0028

showing 64 related works from this author

On the blue phase structure of hydrogen-bonded liquid crystals via 19F NMR

2018

Abstract 19 F NMR spectra are simulated for blue phase I of FPHG( St 1.5 ∗ Ap 1.5 ) based on a model of a double-twisted substructure inside cylinders that form a body-centred cubic lattice. A kinetic matrix is included to describe jump processes over quarter pitch lengths. Though the lines in the NMR spectra are broad and featureless, changes in the widths and positions with temperature are well described by the blue phase model structure. The spectra in the chiral nematic N∗ phase are also simulated. Dynamics in the BP I are found to be slower than in the N∗ phase.

Materials scienceHydrogenSpectral simulationChemieGeneral Physics and Astronomychemistry.chemical_elementBlue phase IDouble-twisted substructure02 engineering and technologyFluorine-19 NMR010402 general chemistryKinetic energy01 natural sciencesMolecular physicsSpectral lineDiffusion rateLiquid crystalLattice (order)Physical and Theoretical Chemistry021001 nanoscience & nanotechnologyFluorine NMR0104 chemical sciencesNMR spectra databasechemistrySubstructureSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyChiral nematic
researchProduct

Efficient light-induced phase transitions in halogen-bonded liquid crystals

2016

Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate tha…

Phase transitionMaterials scienceGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistry02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundDifferential scanning calorimetryLiquid crystalMaterials ChemistryMoleculeHalogen Bonding Liquid Crystals Photoresponsive Supramolecular Chemistryta216ta116ta215Birefringenceta114General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyAzobenzenechemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologieAbsorption (chemistry)0210 nano-technology
researchProduct

Halogen bonding stabilizes a cis-azobenzene derivative in the solid state : A crystallographic study

2017

Crystals oftrans- andcis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastablecis-isomer, allowing single crystals of thecis-azobenzene to be grown. Structural analysis on thecis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of thecis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both thetrans- andcis-i…

Materials Chemistry2506 Metals and Alloys116 Chemical sciencesCrystal structure010402 general chemistryPhotochemistry01 natural sciencesazobenzene; halogen bonding; isomerization; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; 2506; Materials Chemistry2506 Metals and Alloysisomerizationchemistry.chemical_compoundPhase (matter)Atomic and Molecular PhysicsMaterials ChemistryElectronicOptical and Magnetic MaterialsHalogen bondta114010405 organic chemistryChemistrySynthonMetals and AlloysAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystallographyazobenzeneAzobenzenehalogen bondingDensity functional theorySettore CHIM/07 - Fondamenti Chimici Delle Tecnologieand Optics2506IsomerizationDerivative (chemistry)
researchProduct

Surface-relief gratings in halogen-bonded polymer-azobenzene complexes A concentration-dependence study

2017

In recent years, supramolecular complexes comprising a poly(4-vinylpyridine) backbone and azobenzene-based halogen bond donors have emerged as a promising class of materials for the inscription of light-induced surface-relief gratings (SRGs). The studies up to date have focused on building supramolecular hierarchies, i.e., optimizing the polymer–azobenzene noncovalent interaction for efficient surface patterning. They have been conducted using systems with relatively low azobenzene content, and little is known about the concentration dependence of SRG formation in halogen-bonded polymer–azobenzene complexes. Herein, we bridge this gap, and study the concentration dependence of SRG formation…

Polymers116 Chemical sciencesPharmaceutical Science02 engineering and technologyPhotoresponsiveMicroscopy Atomic Force01 natural sciencesAnalytical Chemistrylaw.inventionchemistry.chemical_compoundHalogenslawDrug DiscoverySupramolecularPolymerchemistry.chemical_classificationHalogen bondMolecular StructureAzobenzenePolymer021001 nanoscience & nanotechnologyAzobenzeneChemistry (miscellaneous)HalogenHalogenMolecular MedicineHalogen bonding0210 nano-technologyMaterials scienceSurface PropertiesChemieSupramolecular chemistry010402 general chemistrySurface-relief gratingArticleAzo Compoundlcsh:QD241-441lcsh:Organic chemistryOptical microscopeMoleculePhysical and Theoretical ChemistryThin filmta114Organic Chemistry0104 chemical sciencesCrystallographychemistrysurface-relief grating; azobenzene; halogen bonding; supramolecular; photoresponsiveSettore CHIM/07 - Fondamenti Chimici Delle TecnologieAzo CompoundsMOLECULES
researchProduct

Dissecting the packing forces in mixed perfluorocarbon/aromatic co-crystals

2021

We carried out a systematic evaluation of the packing forces in co-crystals featuring monoiodo- and diiodo-perfluoroalkanes and 1,2,4-oxadiazoles through single crystal X-ray diffraction and theoretical analysis. The molecules assemble via a combination of halogen bonding and specific dispersive interactions involving the perfluorinated units. We quantitatively elucidated the nature and strength of such interactions through solid-state calculations and Hirshfeld surface analysis. One of the co-crystals, formed by two monoiodoperfluorodecane molecules, the longest perfluorinated chain ever solved at the atomic level, allowed us to fully highlight the role of fluorous interactions.

DiffractionMaterials scienceHalogen bondperfluorocarbonSettore CHIM/06 - Chimica OrganicaGeneral ChemistryCondensed Matter PhysicsmodellingCrystallographyChain (algebraic topology)crystal engineeringMoleculehalogen bondGeneral Materials Sciencehalogen bonding supramolecular interactions crystal packingSingle crystalCrystEngComm
researchProduct

Halogen-bonded photoresponsive materials

2015

The aim of the present review is to illustrate to the reader the state of the art on the construction of supramolecular azobenzene-containing materials formed by halogen bonding. These materials include several examples of polymeric, liquid crystalline or crystalline species whose performances are either superior to the corresponding performances of their hydrogen-bonded analogues or simply distinctive of the halogen-bonded species. submittedVersion Peer reviewed

chemistry.chemical_classificationHalogen bondAzobenzene; Halogen bonding; Liquid crystals; Photoresponsive materials; PolymersAzobenzeneLiquid crystallinePolymersLiquid crystals116 Chemical sciencesSupramolecular chemistryPolymerchemistry.chemical_compoundchemistryAzobenzeneLiquid crystalPhotoresponsive materialLiquid crystalPolymer chemistryHalogenSettore CHIM/07 - Fondamenti Chimici Delle TecnologieHalogen bondingta116Photoresponsive materials
researchProduct

Halogen bond directionality translates tecton geometry into self-assembled architecture geometry

2013

The structures of halogen-bonded infinite chains involving two diiodoperfluoroalkanes and a bent bis(pyrid-4′-yl)oxadiazole show that the geometry of the pyridyl pendant rings is translated into the angle between the formed halogen bonds.

Halogen bondhalogen bond self-assemblyBent molecular geometryOxadiazoleGeometryGeneral ChemistrySettore CHIM/06 - Chimica OrganicaCondensed Matter PhysicsSelf assembledchemistry.chemical_compoundchemistryHalogenDirectionalityGeneral Materials Science
researchProduct

Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions

2016

Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [CnF2 n+1-I⋯I⋯I-CnF2 n+1]- are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. Out of the ordinary: The high directionality of halogen bonds and the fluorophobic effect were exploited in the design and synthesis of a new family of unconventional superfluorinated ionic liquid crystals. The liquid crystallinity of the system is driven by halogen-bonded…

116 Chemical sciencesInorganic chemistry1600Supramolecular chemistryIonic bonding010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryCrystallinitychemistry.chemical_compoundLiquid crystal1503ta116Alkylchemistry.chemical_classificationHalogen bondionic liquid crystal010405 organic chemistryChemistryCommunicationChemistry (all)Self-assemblyGeneral MedicineGeneral Chemistryself-assemblyFluorophobic effect; Halogen bonding; Ionic liquid crystals; Self-assembly; Supramolecular chemistry; Chemistry (all); CatalysisCommunicationsfluorophobic effect0104 chemical sciencesCrystallographyhalogen bondingIonic liquidIonic liquid crystalsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFluorophobic effectSelf-assemblyHalogen bondingionic liquid crystalsSupramolecular chemistry
researchProduct

Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding

2019

In this contribution, we report a supramolecular approach toward mesogens showing aggregation-induced emission (AIE). AIE-active aromatic thioethers, acting as hydrogen-bond donors, were combined with alkoxystilbazoles as hydrogen-bond acceptors. Upon self-assembly, hydrogen-bonded complexes with monotropic liquid crystalline behavior were obtained. In addition, it was found that the introduction of a chiral citronellyl side chain leads to drastic bathochromic shift of the emission, which was not observed for linear alkyl chains. The mesomorphic behavior, as well as the photophysical properties as a solid and in the mesophase of the liquid crystalline assemblies, were studied in detail.

Materials scienceHydrogen bondGeneral Chemical EngineeringChemieBiomedical EngineeringSupramolecular chemistryGeneral Materials ScienceSettore CHIM/07 - Fondamenti Chimici Delle TecnologieAggregation-induced emissionPhotochemistryAggregation-Induced-Emission Hydrogen Bonding Liquid Crystals Supramolecular Chemistry Computational ChemistryACS Materials Letters
researchProduct

Hydrogen-bonded liquid crystals with broad-range blue phases

2019

We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time.

Range (particle radiation)Materials scienceHydrogenChemieSupramolecular chemistrySolid-statechemistry.chemical_element02 engineering and technologyGeneral ChemistryAtmospheric temperature range010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesLiquid Crystals Hydrogen Bonding Blue Phases Fluorine Supramolecular Chemistry0104 chemical sciencesCrystallographychemistryLiquid crystalPhase (matter)Materials ChemistrySettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyChirality (chemistry)
researchProduct

Coordination networks incorporating halogen-bond donor sites and azobenzene groups

2016

Two Zn coordination networks, {[Zn(1)(Py)2]2(2-propanol)}n (3) and {[Zn(1)2(Bipy)2](DMF)2}n (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a gues…

MOF Supramolecular Chemistry Halogen Bonding AzobenzeneStereochemistry116 Chemical sciencesSupramolecular chemistry02 engineering and technology010402 general chemistryRing (chemistry)01 natural sciencesIUPAC RECOMMENDATIONS 2013chemistry.chemical_compoundMETAL-ORGANIC FRAMEWORKSdell'Università e della RicercaCHEMISTRYTO-CRYSTAL ISOMERIZATIONMinistero dell'IstruzioneMoleculeGeneral Materials Scienceta215SUPRAMOLECULAR SYNTHESISHalogen bondMETAL-ORGANIC FRAMEWORKS; IUPAC RECOMMENDATIONS 2013; TO-CRYSTAL ISOMERIZATION; SUPRAMOLECULAR SYNTHESIS; VISIBLE-LIGHT; POLYMERS; FLUOROAZOBENZENES; COCRYSTALS; COMPLEXES; CHEMISTRYLigandChemistryFLUOROAZOBENZENESMinistero dell'Istruzione dell'Università e della RicercaGeneral ChemistryCOCRYSTALS021001 nanoscience & nanotechnologyCondensed Matter PhysicsAcceptor0104 chemical sciencesCrystallographyAzobenzeneMIURMetal-organic frameworkCOMPLEXESSettore CHIM/07 - Fondamenti Chimici Delle TecnologieVISIBLE-LIGHTPOLYMERS0210 nano-technology
researchProduct

ortho -Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals

2018

Photoresponsive liquid crystals (LCs) whose alignment can be controlled with UV-Visible light are appealing for a range of photonic applications. From the perspective of exploring the interplay between the light response and the self-assembly of the molecular components, supramolecular liquid crystals are of particular interest. They allow elaborating the structure-property relationships that govern the optical performance of LC materials by subtle variation of the chemical structures of the building blocks. Herein we present a supramolecular system comprising azophenols and stilbazoles as hydrogen-bond donors and acceptors, respectively, and show that ortho-fluorination of the azophenol dr…

Solid-state chemistryMaterials scienceHydrogen116 Chemical sciencesChemieSupramolecular chemistrychemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesLiquid crystalMaterials ChemistryThermal stabilityLight responsebusiness.industryFluorine Liquid Crystals Supramolecular Chemistry Hydrogen bonding PhotoresponsiveMesophaseGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhotonics0210 nano-technologybusinessJournal of Materials Chemistry C
researchProduct

Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning

2015

Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an io…

RELIEF GRATINGSDENSITY-FUNCTIONAL THEORY CALCULATIONSMaterials sciencePHOTOINDUCED BIREFRINGENCE116 Chemical sciencesta221Supramolecular chemistryPhotochemistrysupramolecular chemistryDENSITY-FUNCTIONAL THEORYchemistry.chemical_compoundMaterials ChemistryMoleculeTHERMAL-ISOMERIZATIONPOLARIZATION DEPENDENCECO-CRYSTALSLIQUID-CRYSTAL ORDERta218chemistry.chemical_classificationta214Halogen bondta114PhotoswitchHydrogen bondPolymers Halogen Bonding Supramolecular Chemistry Photoresponsive AzobenzeneGeneral Chemistryhydrogen bondingPOLYMER-AZOBENZENE COMPLEXESSupramolecular polymersSOLID-STATEchemistryAzobenzeneHALOGEN BONDINGHalogenlight-induced surface patterningSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePHOTONIC APPLICATIONSPOLYMER-AZOBENZENE COMPLEXES; DENSITY-FUNCTIONAL THEORY; LIQUID-CRYSTAL ORDER; RELIEF GRATINGS; SOLID-STATE; PHOTOINDUCED BIREFRINGENCE; POLARIZATION DEPENDENCE; THERMAL-ISOMERIZATION; PHOTONIC APPLICATIONS; CO-CRYSTALSJournal of Materials Chemistry C
researchProduct

Improving the mesomorphic behaviour of supramolecular liquid crystals by resonance-assisted hydrogen bonding

2019

A systematic structure-property relationship study on hydrogen-bonded liquid crystals was performed, revealing the impact of resonance-assisted hydrogen bonds (RAHBs) on the self-assembling behavior of the supramolecular architecture. The creation of a six-membered intramolecular hydrogen-bonded ring acts as a counterpart to the self-organization between hydrogen bond donators and acceptors and determines thus the suprastructure. Variation of the hydrogen-bonding pattern allowed us to significantly improve the temperature range of the reported liquid crystalline assemblies.

Materials scienceLiquid crystallineHydrogen bondChemieSupramolecular chemistry02 engineering and technologyGeneral ChemistryAtmospheric temperature range010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)Resonance (chemistry)01 natural sciences0104 chemical sciencesCrystallographyLiquid Crystals Hydrogen Bonding Structure-Property Supramolecular Chemistry intramolecularLiquid crystalIntramolecular forceMaterials ChemistrySettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyJournal of Materials Chemistry C
researchProduct

Naturally occurring polyphenols as building blocks for supramolecular liquid crystals – substitution pattern dominates mesomorphism

2021

A modular supramolecular approach towards hydrogen-bonded liquid crystalline assemblies based on naturally occurring polyphenols is reported. The combination of experimental observations, crystallographic studies and semi-empirical analyses of the assemblies provides insight into the structure–property relationships of these materials. Here a direct correlation of the number of donor OH-groups as well as their orientation with the mesomorphic behavior is reported. We discovered that the number and orientation of the OH-groups have a stronger influence on the mesomorphic behavior of the supramolecular assemblies than the connectivity (e.g. stilbenoid or chalconoid) of the hydrogen bond donor…

ChemistryHydrogen bondLiquid crystallineProcess Chemistry and TechnologyChemieBiomedical EngineeringSupramolecular chemistryEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing Engineering0104 chemical sciencesCrystallographyChemistry (miscellaneous)Liquid crystalSupramolecular Chemistry Liquid Crystals Crystal Engineering Hydrogen BondingMaterials ChemistryChemical Engineering (miscellaneous)Settore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyMolecular Systems Design & Engineering
researchProduct

Photoalignment and Surface-Relief-Grating Formation are Efficiently Combined in Low-Molecular-Weight Halogen-Bonded Complexes

2012

It is demonstrated that halogen bonding can be used to construct low-molecular-weight supramolecular complexes with unique light-responsive properties. In particular, halogen bonding drives the formation of a photoresponsive liquid-crystalline complex between a non-mesogenic halogen bond-donor molecule incorporating an azo group, and a non-mesogenic alkoxystilbazole moiety, acting as a halogen bond-acceptor. Upon irradiation with polarized light, the complex exhibits a high degree of photoinduced anisotropy (order parameter of molecular alignment > 0.5). Moreover, efficient photoinduced surface-relief-grating (SRG) formation occurs upon irradiation with a light interference pattern, with…

Materials scienceLightSurface Propertiesta221Supramolecular chemistryPhotochemistrysupramolecular complexeschemistry.chemical_compoundHalogensliquid crystalsLiquid crystalMaterials TestingMoietyMoleculeGeneral Materials Scienceliquid crystalta218Halogen bondta214Azobenzeneta114Mechanical Engineeringself-assemblyMolecular WeightRefractometryazobenzeneAzobenzenechemistryMechanics of Materialshalogen bondingHalogenazobenzene; halogen bonding; liquid crystals; self-assembly; supramolecular complexesSelf-assemblySettore CHIM/07 - Fondamenti Chimici Delle Tecnologiesurface relief gratings
researchProduct

Photoresponsive Halogen-Bonded Liquid Crystals: The Role of Aromatic Fluorine Substitution

2019

A new strategy for controlling the liquid crystalline and photophysical properties of supramolecular mesogens assembled via halogen bonding is reported. Changing the degree of fluorination at the halogen-bond donor of the supramolecular liquid crystal allows for the fine-tuning of the halogen bond strength and thereby provides control over the temperature range of the mesophase. At least three fluorine atoms have to be present to ensure efficient polarization of the halogen-bond donor and the formation of a mesophase. In addition, it was found that stilbazole acceptors are superior to their azopyridine counterparts in promoting stable liquid crystalline phases. The halogen-bond-driven supra…

Materials scienceHalogen bondPhotoisomerizationGeneral Chemical EngineeringSupramolecular chemistryChemiechemistry.chemical_elementMesophase02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundAzobenzenechemistryLiquid crystalHalogenMaterials ChemistryFluorineHalogen Bonding Fluorine Liquid Crystals Photoresponsive MaterialsSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technology
researchProduct

Alkylated Aromatic Thioethers with Aggregation‐Induced Emission Properties—Assembly and Photophysics

2019

In this contribution, we present the synthesis and self-assembly of alkylated thioethers with interesting photophysical properties. To this end, the emission, absorption and excitation spectra in organic solvents and as aggregates in water were measured as well as the corresponding photoluminescence quantum yields and lifetimes. The aggregates in aqueous media were visualized and measured using transmission electron microscopy. Besides that, crystal structures of selected compounds allowed a detailed discussion of the structure–property relationship. Furthermore, the mesomorphic behavior was investigated using polarized optical microscopy (POM) as well as differential scanning calorimetry (…

aggregation-induced emissionPhotoluminescenceChemiemesomorphismCrystal structure010402 general chemistryPhotochemistry01 natural sciencesBiochemistrylaw.inventionDifferential scanning calorimetryOptical microscopelawX-ray diffractometric analysis010405 organic chemistryChemistryOrganic Chemistryself-assemblyGeneral ChemistryFluorescence0104 chemical sciencesTransmission electron microscopyfluorescenceSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assemblyAbsorption (chemistry)Chemistry – An Asian Journal
researchProduct

Supramolecular Modification of ABC Triblock Terpolymers in Confinement Assembly

2018

The self-assembly of AB diblock copolymers in three-dimensional (3D) soft confinement of nanoemulsions has recently become an attractive bottom up route to prepare colloids with controlled inner morphologies. In that regard, ABC triblock terpolymers show a more complex morphological behavior and could thus give access to extensive libraries of multicompartment microparticles. However, knowledge about their self-assembly in confinement is very limited thus far. Here, we investigated the confinement assembly of polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) triblock terpolymers in nanoemulsion droplets. Depending on the block weight fractio…

nanoemulsions3D confinement assemblyMaterials scienceBlock copolymerGeneral Chemical EngineeringChemieSupramolecular chemistryNanoparticle02 engineering and technology010402 general chemistryMethacrylate01 natural sciencesArticlesupramolecular chemistrylcsh:ChemistrymulticompartmentNanoemulsionCopolymerGeneral Materials ScienceMicroparticleAlkylchemistry.chemical_classificationmicroparticlesHydrogen bond021001 nanoscience & nanotechnology0104 chemical sciencesblock copolymersLamella (surface anatomy)Microparticlelcsh:QD1-999Chemical engineeringchemistryhalogen bondSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyNanomaterials
researchProduct

Alkyloxy modified pyrene fluorophores with tunable photophysical and crystalline properties

2019

Novel alkyloxy modified 2,7-di-tert-butyl-4,5,9,10-tetra(arylethynyl)pyrenes were prepared through a straightforward Sonogashira coupling approach. Optical properties such as quantum yields and absorption/emission spectra of the fluorophores were investigated by UV/Vis and fluorescence measurements. Aggregation induced excimer formation of the chromophores in polar solvents and in the solid state was proved by the presence of a characteristic bathochromically shifted emission band and a decrease of the emission capability. These results strongly indicate the unexpected observation that the excimer formation of adjacent pyrene rings is not prevented by the introduction of bulky tert-butyl su…

ChemistryChemieSonogashira coupling02 engineering and technologyGeneral ChemistryChromophore010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryExcimer01 natural sciencesFluorescenceCatalysis0104 chemical sciencesLiquid crystals Luminophore pyrene crystal packingchemistry.chemical_compoundMaterials ChemistryMoleculePyreneEmission spectrumSettore CHIM/07 - Fondamenti Chimici Delle TecnologieAbsorption (chemistry)0210 nano-technology
researchProduct

Structure-property relationships in aromatic thioethers featuring aggregation-induced emission : Solid-state structures and theoretical analysis

2019

We describe in this paper a structure–property relationship study of aromatic thioethers with aggregation-induced emission (AIE) properties. We combine a structural analysis based on geometrical consideration with an in-depth analysis of the crystalline packing supported by quantum mechanical calculations. Our results allow us to correlate the enhanced fluorescence quantum yields with the significant increase of C–H⋯π and the decrease of π⋯π interactions in the solid state – a result which supports the well-accepted AIE mechanism quantitatively.

Materials scienceSolid-stateChemieStructure property02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFluorescence0104 chemical sciencesChemical physicsGeneral Materials ScienceSettore CHIM/07 - Fondamenti Chimici Delle TecnologieAggregation-induced emission0210 nano-technologyAggregation-Induced-Emission Packing Computational Chemistry FluorescenceQuantum
researchProduct

Photoresponsive ionic liquid crystals assembled: Via halogen bond: En route towards light-controllable ion transporters

2017

We demonstrate that halogen bonding (XB) can offer a novel approach for the construction of photoresponsive ionic liquid crystals. In particular, we assembled two new supramolecular complexes based on 1-ethyl-3-methylimidazolium iodides and azobenzene derivatives containing an iodotetrafluoro-benzene ring as XB donor, where the iodide anion acted as an XB acceptor. DSC and X-ray diffraction analyses revealed that the preferred stoichiometry between the XB donors and acceptors is 2 : 1, and that the iodide anions act as bidentate XB-acceptors, binding two azobenzene derivatives. Due to the high directionality of the XB, calamitic superanions are obtained, while the segregation occurring betw…

chemistry.chemical_classificationHalogen bondta114ChemistryInorganic chemistryIodideSupramolecular chemistryIonic bonding02 engineering and technologySupramolecular Chemistry Liquid Crystals Halogen Bonding Photoresponsive010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAcceptor0104 chemical sciencesCrystallographychemistry.chemical_compoundAzobenzeneIonic liquidMoleculeSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhysical and Theoretical Chemistry0210 nano-technology
researchProduct

Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

2017

Summary Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation …

Materials scienceBlock copolymerGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistryNanotechnologyblock copolymer02 engineering and technologyhierarchical self-assembly010402 general chemistry01 natural sciencesBiochemistryMicelleArticleSDG9: Industry innovation and infrastructuresupramolecular complexesMaterials ChemistryCopolymerEnvironmental ChemistryNon-covalent interactionsMoleculeLamellar structureta116chemistry.chemical_classificationHalogen bondta114Biochemistry (medical)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesblock copolymerschemistryChemical engineeringIndustry innovation and infrastructure [SDG9]nanofabricationhalogen bondSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assembly0210 nano-technology
researchProduct

Supramolecular control of liquid crystals by doping with halogen-bonding dyes

2017

Introducing photochromic or polymeric dopants into nematic liquid crystals is a well-established method to create stimuli-responsive photonic materials with the ability to "control light with light". Herein, we demonstrate a new material design concept by showing that specific supramolecular interactions between the host liquid crystal and the guest dopants enhance the optical performance of the doped liquid crystals. By varying the type and strength of the dopant-host interaction, the phase-transition temperature, the order parameter of the guest molecules, and the diffraction signal in response to interference irradiation, can be accurately engineered. Our concept points out the potential…

Materials scienceGeneral Chemical EngineeringHalogen Bonding Polymers Liquid Crystals Photoresponsive Materials Supramolecular Chemistry116 Chemical sciencesSupramolecular chemistryphotonicsPhysics::OpticsNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesPhotonic metamaterialPhotochromismliquid crystalsLiquid crystalCondensed Matter::Superconductivitydye-doped liquid crystalsta116ta215Halogen bondDopantbusiness.industryDopingGeneral Chemistry021001 nanoscience & nanotechnologysupramolecular interactions0104 chemical sciencesCondensed Matter::Soft Condensed Matterhalogen bondingOptoelectronicsSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhotonics0210 nano-technologybusinessRSC Advances
researchProduct

Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol

2020

A series of hydrogen-bonded liquid crystals based on resveratrol and resveratrone is reported and investigated with respect to their photo-switchability (at 405 nm) and photo-cyclisation (at 300 nm).

Materials scienceHydrogenMetals and AlloysChemiechemistry.chemical_elementGeneral ChemistryResveratrolPhotochemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryLiquid crystalMaterials ChemistryCeramics and CompositesSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhotoswitching Liquid Crystals Hydrogen Bonding Packing Analysis
researchProduct

Chiral mesophases of hydrogen-bonded liquid crystals

2020

The chiral induction in hydrogen-bonded liquid crystals is investigated. The experimental study was accompanied by detailed density functional theory calculations and variable-temperature solid-state deuteron NMR measurements indicating that interactions between the linking groups of the hydrogen-bond accepting unit play a key role in the chiral induction.

Materials scienceHydrogenProcess Chemistry and TechnologyBiomedical EngineeringChemieEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing Engineering0104 chemical sciencesCrystallographychemistryDeuteriumChemistry (miscellaneous)Liquid crystalMaterials ChemistryChemical Engineering (miscellaneous)Supramolecular Chemistry Liquid Crystals Chirality Hydrogen Bonding Crystal EngineeringDensity functional theorySettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyChiral induction
researchProduct

Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

2015

We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems. acceptedVersion Peer reviewed

chemistry.chemical_classificationPhysics::Biological PhysicsQuantitative Biology::BiomoleculesMaterials scienceHalogen bond116 Chemical sciencesGeneral ChemistryPolymerChromophorePolymers Supramolecular Chemistry Halogen Bonding Nonlinear Optical ResponseHalogen bonding; NLO; supramolecular polymers114 Physical sciencesSupramolecular polymersCondensed Matter::Soft Condensed MatterOptical nonlinearityNonlinear opticalchemistryChemical physicsPolymer chemistryMaterials ChemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhysics::Chemical Physics
researchProduct

Halogen Bonding beyond Crystals in Materials Science

2019

Halogen bonding has recently gained well deserved attention in present-day research for its importance in many fields of supramolecular science and crystal engineering. Although generally overlooked in comprehensive studies in the past, halogen bonding has become an important tool also in the field of materials science. An increased number of scientific reports are published every year where halogen bonding is exploited in soft materials rather than in crystal engineering. Here, we focus on a description of the most exciting contemporary developments in the field of halogen-bonded functional soft materials, assembled using the guiding principles of crystal engineering. We give a particular …

Halogen BondingHalogen bondMaterials science010304 chemical physicsChemieNanotechnology010402 general chemistryCrystal engineering01 natural sciencesSoft materialsSupramolecular Chemistry0104 chemical sciencesSurfaces Coatings and Films0103 physical sciencesMaterials ChemistrySettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhysical and Theoretical ChemistryLiquid CrystalPolymerCrystals Gel
researchProduct

Azobenzene-based difunctional halogen-bond donor: Towards the engineering of photoresponsive co-crystals

2014

Halogen bonding is emerging as a powerful non-covalent interaction in the context of supramolecular photoresponsive materials design, particularly due to its high directionality. In order to obtain further insight into the solid-state features of halogen-bonded photoactive molecules, three halogen-bonded co-crystals containing an azobenzene-based difunctional halogen-bond donor molecule, (E)-bis(4-iodo-2,3,5,6-tetrafluorophenyl)diazene, C12F8I2N2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of the non-iodinated homologue (E)-bis(2,3,5,6-tetrafluorophenyl)diazene, C12H2F8N2, is also reported. It is demonstrated that the stud…

Halogen bondPhotoisomerizationChemistryhalogen-bonded co-crystalsupramolecular photoresponsive materials designIntermolecular forceMetals and AlloysSupramolecular chemistryContext (language use)photoisomerizationCrystal structurePhotochemistryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundAzobenzeneMaterials ChemistryMoleculeSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

CCDC 1445294: Experimental Crystal Structure Determination

2016

Related Article: Francisco Fernandez-Palacio, Marco Saccone, Arri Priimagi, Giancarlo Terraneo, Tullio Pilati, Pierangelo Metrangolo, Giuseppe Resnati|2016|CrystEngComm|18|2251|doi:10.1039/C6CE00059B

catena-[(mu-5-((4-(dimethylamino)phenyl)diazenyl)isophthalato)-(mu-44'-(ethene-12-diyl)dipyridine)-zinc(ii) NN-dimethylformamide solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1449804: Experimental Crystal Structure Determination

2017

Related Article: Francisco Fernandez-Palacio, Mikko Poutanen, Marco Saccone, Antti Siiskonen, Giancarlo Terraneo, Giuseppe Resnati, Olli Ikkala, Pierangelo Metrangolo, and Arri Priimagi|2016|Chem.Mater.|28|8314|doi:10.1021/acs.chemmater.6b03460

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-(4-(dodecyloxy)phenyl)-2-(2356-tetrafluoro-4-iodophenyl)diazene 4-(2-(4-methoxyphenyl)vinyl)pyridineExperimental 3D Coordinates
researchProduct

CCDC 1535157: Experimental Crystal Structure Determination

2017

Related Article: Jaana Vapaavuori, Antti Siiskonen, Valentina Dichiarante, Alessandra Forni, Marco Saccone, Tullio Pilati, Christian Pellerin, Atsushi Shishido, Pierangelo Metrangolo, Arri Priimagi|2017|RSC Advances|7|40237|doi:10.1039/C7RA06397K

Space GroupCrystallographyCrystal System4'-pentyl[11'-biphenyl]-4-carbonitrile NN-dimethyl-4-[(2356-tetrafluoro-4-iodophenyl)diazenyl]anilineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1866422: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Matthias Spengler, Michael Pfletscher, Kim Kuntze, Matti Virkki, Christoph Wölper, Robert Gehrke, Georg Jansen, Pierangelo Metrangolo, Arri Priimagi, Michael Giese|2019|Chem.Mater.|31|462|doi:10.1021/acs.chemmater.8b04197

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-(4-propoxyphenyl)-2-(235-trifluoro-4-iodophenyl)diazene 4-[2-(4-methoxyphenyl)ethenyl]pyridineExperimental 3D Coordinates
researchProduct

CCDC 1894901: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

Space GroupCrystallographyCrystal SystemCrystal Structure46-bis{[2-(octyloxy)phenyl]sulfanyl}benzene-13-dicarbonitrileCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1541305: Experimental Crystal Structure Determination

2017

Related Article: Marco Saccone, Francisco Fernandez Palacio, Gabriella Cavallo, Valentina Dichiarante, Matti Virkki, Giancarlo Terraneo, Arri Priimagi, Pierangelo Metrangolo|2017|Faraday Discuss.|203|407|doi:10.1039/C7FD00120G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-methyl-1-octyl-1H-imidazol-3-ium bis(NN-dimethyl-4-((2356-tetrafluoro-4-iodophenyl)diazenyl)aniline) iodideExperimental 3D Coordinates
researchProduct

CCDC 1541306: Experimental Crystal Structure Determination

2017

Related Article: Marco Saccone, Francisco Fernandez Palacio, Gabriella Cavallo, Valentina Dichiarante, Matti Virkki, Giancarlo Terraneo, Arri Priimagi, Pierangelo Metrangolo|2017|Faraday Discuss.|203|407|doi:10.1039/C7FD00120G

Space GroupCrystallographyCrystal System1-dodecyl-3-methyl-1H-imidazol-3-ium bis(1-(4-(dodecyloxy)phenyl)-2-(2356-tetrafluoro-4-iodophenyl)diazene) iodideCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1446403: Experimental Crystal Structure Determination

2016

Related Article: Gabriella Cavallo, Giancarlo Terraneo, Alessandro Monfredini, Marco Saccone, Arri Priimagi, Tullio Pilati, Giuseppe Resnati, Pierangelo Metrangolo, Duncan W. Bruce|2016|Angew.Chem.,Int.Ed.|55|6300|doi:10.1002/anie.201601278

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-Ethyl-3-methylimidazolium iodide bis(11122334455667788-heptadecafluoro-8-iodo-octane)Experimental 3D Coordinates
researchProduct

CCDC 1939466: Experimental Crystal Structure Determination

2020

Related Article: Meik Blanke, Jan Balszuweit, Marco Saccone, Christoph Wölper, David Doblas Jiménez, Markus Mezger, Jens Voskuhl, Michael Giese|2020|Chem.Commun.|56|1105|doi:10.1039/C9CC07721A

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestris(4-{2-[4-(octyloxy)phenyl]ethenyl}pyridine) 5-[2-(4-hydroxyphenyl)ethenyl]benzene-13-diol
researchProduct

CCDC 1893331: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

Space GroupCrystallography46-bis{[4-(nonyloxy)phenyl]sulfanyl}benzene-13-dicarbonitrileCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1895359: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

Space GroupCrystallographyCrystal System25-bis{[3-(octyloxy)phenyl]sulfanyl}benzene-14-dicarbonitrileCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1886744: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Michael Pfletscher, Sven Kather, Christoph Wölper, Constantin Daniliuc, Markus Mezger, Michael Giese|2019|J.Mater.Chem.C|7|8643|doi:10.1039/C9TC02787D

Space GroupCrystallographytris(4-{[4-(hexyloxy)phenyl]diazenyl}pyridine) 2-[(hydroxyimino)methyl]benzene-135-triolCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 883070: Experimental Crystal Structure Determination

2018

Related Article: Arri Priimagi, Marco Saccone, Gabriella Cavallo, Atsushi Shishido, Tullio Pilati, Pierangelo Metrangolo and Giuseppe Resnati|2012|Adv.Mater.|24|OP345|doi:10.1002/adma.201204060

NN-dimethyl-4-((2356-tetrafluoro-4-iodophenyl)diazenyl)aniline 4-(2-(4-methoxyphenyl)vinyl)pyridineSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1895646: Experimental Crystal Structure Determination

2019

Related Article: Andreas Kapf, Hassan Eslahi, Meik Blanke, Marco Saccone, Michael Giese, Marcel Albrecht|2019|New J.Chem.|43|6361|doi:10.1039/C9NJ00652D

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates27-di-t-butyl-45910-tetrakis{[4-(decyloxy)phenyl]ethynyl}pyrene
researchProduct

CCDC 1939467: Experimental Crystal Structure Determination

2020

Related Article: Meik Blanke, Jan Balszuweit, Marco Saccone, Christoph Wölper, David Doblas Jiménez, Markus Mezger, Jens Voskuhl, Michael Giese|2020|Chem.Commun.|56|1105|doi:10.1039/C9CC07721A

Space GroupCrystallographybis(4-{2-[4-(octyloxy)phenyl]ethenyl}pyridine) 4-(68-dihydroxynaphthalen-2-yl)but-3-en-2-oneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1445292: Experimental Crystal Structure Determination

2016

Related Article: Francisco Fernandez-Palacio, Marco Saccone, Arri Priimagi, Giancarlo Terraneo, Tullio Pilati, Pierangelo Metrangolo, Giuseppe Resnati|2016|CrystEngComm|18|2251|doi:10.1039/C6CE00059B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-5-((4-(dimethylamino)phenyl)diazenyl)-246-triiodoisophthalato)-bis(pyridine)-zinc(ii) propan-2-ol solvate]Experimental 3D Coordinates
researchProduct

CCDC 1895424: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

Space GroupCrystallographyCrystal System46-bis[4-(octyloxy)phenoxy]benzene-13-dicarbonitrileCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1866421: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Matthias Spengler, Michael Pfletscher, Kim Kuntze, Matti Virkki, Christoph Wölper, Robert Gehrke, Georg Jansen, Pierangelo Metrangolo, Arri Priimagi, Michael Giese|2019|Chem.Mater.|31|462|doi:10.1021/acs.chemmater.8b04197

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-(4-propoxyphenyl)-2-(236-trifluoro-4-iodophenyl)diazene 4-[2-(4-methoxyphenyl)ethenyl]pyridineExperimental 3D Coordinates
researchProduct

CCDC 1025655: Experimental Crystal Structure Determination

2014

Related Article: Marco Saccone, Valentina Dichiarante, Alessandra Forni, Alexis Goulet-Hanssens, Gabriella Cavallo, Jaana Vapaavuori, Giancarlo Terraneo, Christopher J. Barrett, Giuseppe Resnati, Pierangelo Metrangolo, Arri Priimagi|2015|J.Mater.Chem.C|3|759|doi:10.1039/C4TC02315C

Space GroupCrystallographybis(4-((4-(dimethylamino)phenyl)diazenyl)-2356-tetrafluorophenol) 44'-ethene-12-diyldipyridineCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1942435: Experimental Crystal Structure Determination

2021

Related Article: Jan Balszuweit, Meik Blanke, Marco Saccone, Markus Mezger, Constantin G. Daniliuc, Christoph Wölper, Michael Giese, Jens Voskuhl|2021|MSDE|6|390|doi:10.1039/D0ME00171F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-[2-(35-dihydroxyphenyl)ethenyl]benzene-12-diol tris(4-{2-[4-(octyloxy)phenyl]ethenyl}pyridine)Experimental 3D Coordinates
researchProduct

CCDC 1445293: Experimental Crystal Structure Determination

2016

Related Article: Francisco Fernandez-Palacio, Marco Saccone, Arri Priimagi, Giancarlo Terraneo, Tullio Pilati, Pierangelo Metrangolo, Giuseppe Resnati|2016|CrystEngComm|18|2251|doi:10.1039/C6CE00059B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-hydrogen 5-((4-(dimethylamino)phenyl)diazenyl)-246-tri-iodoisophthalato)-bis(44'-bipyridine)-zinc(ii) NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1895645: Experimental Crystal Structure Determination

2019

Related Article: Andreas Kapf, Hassan Eslahi, Meik Blanke, Marco Saccone, Michael Giese, Marcel Albrecht|2019|New J.Chem.|43|6361|doi:10.1039/C9NJ00652D

Space GroupCrystallography45910-tetrakis[(4-butoxyphenyl)ethynyl]-27-di-t-butylpyreneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1877494: Experimental Crystal Structure Determination

2019

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2019|Chem.Asian J.|14|814|doi:10.1002/asia.201801564

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates45-bis{[4-(octyloxy)phenyl]sulfanyl}benzene-12-dicarbonitrile
researchProduct

CCDC 1871602: Experimental Crystal Structure Determination

2018

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2018|CSD Communication|||

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters25-bis{[4-(octyloxy)phenyl]sulfanyl}benzene-14-dicarbonitrileExperimental 3D Coordinates
researchProduct

CCDC 1025656: Experimental Crystal Structure Determination

2014

Related Article: Marco Saccone, Valentina Dichiarante, Alessandra Forni, Alexis Goulet-Hanssens, Gabriella Cavallo, Jaana Vapaavuori, Giancarlo Terraneo, Christopher J. Barrett, Giuseppe Resnati, Pierangelo Metrangolo, Arri Priimagi|2015|J.Mater.Chem.C|3|759|doi:10.1039/C4TC02315C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(4-((4-(iodoethynyl)phenyl)diazenyl)-NN-dimethylaniline) 44'-ethene-12-diyldipyridineExperimental 3D Coordinates
researchProduct

CCDC 2077920: Experimental Crystal Structure Determination

2021

Related Article: Marco Saccone, Andrea Pace, Ivana Pibiri, Gabriella Cavallo, Pierangelo Metrangolo, Tullio Pilati, Giuseppe Resnati, Giancarlo Terraneo|2021|CrystEngComm|23|7324|doi:10.1039/D1CE01001H

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters44'-(124-oxadiazole-35-diyl)dipyridine bis(11122334455667788991010-henicosafluoro-10-iododecane)Experimental 3D Coordinates
researchProduct

CCDC 1886743: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Michael Pfletscher, Sven Kather, Christoph Wölper, Constantin Daniliuc, Markus Mezger, Michael Giese|2019|J.Mater.Chem.C|7|8643|doi:10.1039/C9TC02787D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(4-[(4-propoxyphenyl)diazenyl]pyridine) 1-(246-trihydroxyphenyl)ethan-1-oneExperimental 3D Coordinates
researchProduct

CCDC 1945777: Experimental Crystal Structure Determination

2021

Related Article: Jan Balszuweit, Meik Blanke, Marco Saccone, Markus Mezger, Constantin G. Daniliuc, Christoph Wölper, Michael Giese, Jens Voskuhl|2021|MSDE|6|390|doi:10.1039/D0ME00171F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-[2-(35-dihydroxyphenyl)ethenyl]benzene-12-diol tris(4-{[4-(octyloxy)phenyl]diazenyl}pyridine)Experimental 3D Coordinates
researchProduct

CCDC 1871491: Experimental Crystal Structure Determination

2019

Related Article: Steffen Riebe, Marco Saccone, Jacqueline Stelzer, Andrea Sowa, Christoph Wölper, Kateryna Soloviova, Cristian A. Strassert, Michael Giese, Jens Voskuhl|2019|Chem.Asian J.|14|814|doi:10.1002/asia.201801564

Space GroupCrystallographyCrystal SystemCrystal Structure46-bis{[4-(octyloxy)phenyl]sulfanyl}benzene-13-dicarbonitrileCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938656: Experimental Crystal Structure Determination

2021

Related Article: Marco Saccone, Meik Blanke, Constantin G. Daniliuc, Heikki Rekola, Jacqueline Stelzer, Arri Priimagi, Jens Voskuhl, Michael Giese|2019|ACS Materials Lett.|1|589|doi:10.1021/acsmaterialslett.9b00371

46-bis[(3-hydroxyphenyl)sulfanyl]benzene-13-dicarbonitrile bis(4-{2-[4-(octyloxy)phenyl]ethenyl}pyridine)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1866420: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Matthias Spengler, Michael Pfletscher, Kim Kuntze, Matti Virkki, Christoph Wölper, Robert Gehrke, Georg Jansen, Pierangelo Metrangolo, Arri Priimagi, Michael Giese|2019|Chem.Mater.|31|462|doi:10.1021/acs.chemmater.8b04197

Space GroupCrystallography1-(4-propoxyphenyl)-2-(2356-tetrafluoro-4-iodophenyl)diazene 4-[2-(4-methoxyphenyl)ethenyl]pyridineCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1895360: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Steffen Riebe, Jacqueline Stelzer, Christoph Wölper, Constantin G. Daniliuc, Jens Voskuhl, Michael Giese|2019|CrystEngComm|21|3097|doi:10.1039/C9CE00444K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters25-bis{[2-(octyloxy)phenyl]sulfanyl}benzene-14-dicarbonitrileExperimental 3D Coordinates
researchProduct

CCDC 1449805: Experimental Crystal Structure Determination

2017

Related Article: Francisco Fernandez-Palacio, Mikko Poutanen, Marco Saccone, Antti Siiskonen, Giancarlo Terraneo, Giuseppe Resnati, Olli Ikkala, Pierangelo Metrangolo, and Arri Priimagi|2016|Chem.Mater.|28|8314|doi:10.1021/acs.chemmater.6b03460

Space GroupCrystallographyCrystal SystemCrystal Structure1-(4-(decyloxy)phenyl)-2-(2356-tetrafluoro-4-iodophenyl)diazene 4-(2-(4-methoxyphenyl)vinyl)pyridineCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1449802: Experimental Crystal Structure Determination

2017

Related Article: Francisco Fernandez-Palacio, Mikko Poutanen, Marco Saccone, Antti Siiskonen, Giancarlo Terraneo, Giuseppe Resnati, Olli Ikkala, Pierangelo Metrangolo, and Arri Priimagi|2016|Chem.Mater.|28|8314|doi:10.1021/acs.chemmater.6b03460

Space GroupCrystallographyCrystal System1-(4-(octyloxy)phenyl)-2-(2356-tetrafluoro-4-iodophenyl)diazene 4-(2-(4-ethoxyphenyl)vinyl)pyridineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1884535: Experimental Crystal Structure Determination

2019

Related Article: Marco Saccone, Michael Pfletscher, Sven Kather, Christoph Wölper, Constantin Daniliuc, Markus Mezger, Michael Giese|2019|J.Mater.Chem.C|7|8643|doi:10.1039/C9TC02787D

Space GroupCrystallography4-{[4-(octyloxy)phenyl]diazenyl}pyridine 2-nitrobenzene-135-triolCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct