6533b85efe1ef96bd12bf46f
RESEARCH PRODUCT
Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains
Olli IkkalaGabriella CavalloAlessandro LuzioJohannes S. HaatajaArri PriimagiNikolay HoubenovFrancisco Fernandez-palacioMarco SacconePierangelo MetrangoloGabriele GiancaneRoberto Milanisubject
Materials scienceBlock copolymerGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistryNanotechnologyblock copolymer02 engineering and technologyhierarchical self-assembly010402 general chemistry01 natural sciencesBiochemistryMicelleArticleSDG9: Industry innovation and infrastructuresupramolecular complexesMaterials ChemistryCopolymerEnvironmental ChemistryNon-covalent interactionsMoleculeLamellar structureta116chemistry.chemical_classificationHalogen bondta114Biochemistry (medical)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesblock copolymerschemistryChemical engineeringIndustry innovation and infrastructure [SDG9]nanofabricationhalogen bondSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assembly0210 nano-technologydescription
Summary Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabrication.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-09 |