Search results for "black hole"
showing 10 items of 336 documents
Accelerated observers and the notion of singular spacetime
2017
Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We…
The Anti-de Sitter Gott Universe: A Rotating BTZ Wormhole
1999
Recently it has been shown that a 2+1 dimensional black hole can be created by a collapse of two colliding massless particles in otherwise empty anti-de Sitter space. Here we generalize this construction to the case of a non-zero impact parameter. The resulting spacetime, which may be regarded as a Gott universe in anti-de Sitter background, contains closed timelike curves. By treating these as singular we are able to interpret our solution as a rotating black hole, hence providing a link between the Gott universe and the BTZ black hole. When analyzing the spacetime we see how the full causal structure of the interior can be almost completely inferred just from considerations of the conform…
The role of the Planck scale in black hole radiance
2008
Lorentz invariance plays a pivotal role in the derivation of the Hawking effect, which crucially requires an integration in arbitrarily small distances or, equivalently, in unbounded energies. New physics at the Planck scale could, therefore, potentially modify the emission spectrum. We argue, however, that the kinematic invariance can be deformed in such a way that the thermal spectrum remains insensitive to trans-Planckian physics.
Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons
2016
Recent numerical relativity simulations within the Einstein--Maxwell--(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordstr\"om black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of the superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these $\textit{unstable}$ solitons leads…
Further evidence for the presence of a neutron star in 4U 2206+54. INTEGRAL and VLA observations
2005
The majority of High Mass X-ray Binaries (HMXBs) behave as X-ray pulsars, revealing that they contain a magnetised neutron star. Among the four HMXBs not showing pulsations, and that do not show the characteristics of accreting black holes, there is the unusual HMXB 4U 2206+54. Here we present contemporaneous high-energy and radio observations of this system conducted with INTEGRAL and the VLA in order to unveil its nature. The high-energy spectra show clear indications of the presence of an absorption feature at ~32 keV. This is the third high-energy observatory which reveals marginal evidence of this feature, giving strong support to the existence of a cyclotron resonance scattering featu…
Shock waves and QPOs in 2D rotating accretion flows around black holes
2008
We examine numerically shock waves formed in 2D rotating accretion flows around a stellar‐mass and a supermassive black holes, while taking account of the cooling and heating of the gas and the radiation transport. As the results, we obtain general properties of the shock oscillations and the luminosity behaviors as QPOs independent of the black hole masses.
The different fates of a low-mass X-ray binary - I. Conservative mass transfer
2003
We study the evolution of a low mass x-ray binary coupling a binary stellar evolution code with a general relativistic code that describes the behavior of the neutron star. We assume the neutron star to be low--magnetized (B~10^8 G). In the systems investigated in this paper, our computations show that during the binary evolution the companion transfers as much as 1 solar mass to the neutron star, with an accretion rate of 10^-9 solar masses/yr. This is sufficient to keep the inner rim of the accretion disc in contact with the neutron star surface, thus preventing the onset of a propeller phase capable of ejecting a significant fraction of the matter transferred by the companion. We find th…
Long term X-ray spectral variability of the nucleus of M81
2003
We have analysed the soft X-ray emission from the nuclear source of the nearby spiral galaxy M81, using the available data collected with ROSAT, ASCA, BeppoSAX and Chandra. The source flux is highly variable, showing (sometimes dramatic: a factor of 4 in 20 days) variability at different timescales, from 2 days to 4 years, and in particular a steady increase of the flux by a factor of >~ 2 over 4 years, broken by rapid flares. After accounting for the extended component resolved by Chandra, the nuclear soft X-ray spectrum (from ROSAT/PSPC, BeppoSAX/LECS and Chandra data) cannot be fitted well with a single absorbed power-law model. Acceptable fits are obtained adding an extra component, …
Numerical evolution of matter in dynamical axisymmetric black hole spacetimes
2000
We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetime…
Dynamics of oscillating relativistic tori around Kerr black holes
2004
We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background spacetime of a Kerr black hole. By combining general relativistic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. Firstly, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed duri…