Search results for "bond."

showing 10 items of 3516 documents

Maternal Inheritance of a Recessive RBP4 Defect in Canine Congenital Eye Disease

2018

SUMMARY Maternally skewed transmission of traits has been associated with genomic imprinting and oocyte-derived mRNA. We report canine congenital eye malformations, caused by an amino acid deletion (K12del) near the N terminus of retinol-binding protein (RBP4). The disease is only expressed when both dam and offspring are deletion homozygotes. RBP carries vitamin A (retinol) from hepatic stores to peripheral tissues, including the placenta and developing eye, where it is required to synthesize retinoic acid. Gestational vitamin A deficiency is a known risk factor for ocular birth defects. The K12del mutation disrupts RBP folding in vivo, decreasing its secretion from hepatocytes to serum. T…

0301 basic medicineMaleNon-Mendelian inheritanceProtein Foldingcongenital eye defectEye Diseasesgenetic structuresNATIVE DISULFIDE BONDSMedical PhysiologyRetinoic acidReproductive health and childbirth413 Veterinary scienceMicrophthalmiavitamin Achemistry.chemical_compoundPlasmaA-vitamiini2.1 Biological and endogenous factorsMicrophthalmosPrealbuminCRYSTAL-STRUCTUREAetiologyBase Pairinglcsh:QH301-705.5Sequence DeletionPediatricwhole genome sequencingVITAMIN-A-DEFICIENCYANOPHTHALMIAPenetrancePedigreemedicine.anatomical_structurePhenotypeFemalemedicine.medical_specialtyGenotypeENDOPLASMIC-RETICULUMGenes RecessiveMETABOLISMBiologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesDogscanine geneticsInternal medicinePlacentaRETINOL-BINDING-PROTEINGeneticsmedicineAnimalsHumansRecessiveMALFORMATIONSBIOCHEMICAL BASISAmino Acid SequenceAlleleEye Disease and Disorders of VisionNutritiongenome-wide association study030102 biochemistry & molecular biologywestern blottingMUTATIONSta1184RBP4maternal inheritancemedicine.diseaseRetinol-Binding ProteinsRetinol binding proteinnuclear magnetic resonance030104 developmental biologyEndocrinologychemistryGeneslcsh:Biology (General)microphthalmiaGenetic LociHela Cells1182 Biochemistry cell and molecular biologyCongenital Structural Anomalies3111 BiomedicineBiochemistry and Cell BiologyDigestive DiseasesGenomic imprintingRetinol-Binding Proteins PlasmaHeLa Cells
researchProduct

Effect of rinsing time and surface contamination on the bond strength of silorane-based and dimethacrylate-based composites to enamel

2018

Background The aim of this study was to assess whether saliva contamination and rinsing time for 15, 30, and 60 seconds, affects the shear bond strength of silorane and methacrylate-based composites to enamel. Material and Methods Two light cure resin, P60 (3M ESPE) and Filtek LS Silorane were tested. 120 sound premolars were randomly divided into four groups of 30 teeth based on composite type with or without saliva contamination after etching and rinsing. Each group was further divided into three subgroups according to their rinsing time. Then a cylinder of the composite was bonded to the enamel and Shear bond strength was assessed. To determine the failure mode, the bonded surfaces were …

0301 basic medicineMaterials scienceEnamel paintBond strengthResearchComposite number030206 dentistryContaminationMethacrylate:CIENCIAS MÉDICAS [UNESCO]Operative Dentistry and Endodontics03 medical and health sciences030104 developmental biology0302 clinical medicineLeast significant differencestomatognathic systemvisual_artUNESCO::CIENCIAS MÉDICASvisual_art.visual_art_mediumShear strengthAdhesiveComposite materialGeneral Dentistry
researchProduct

Applications of confocal laser scanning microscopy to dental bonding.

1998

The introduction of confocal laser scanning microscopy (CLSM) has provided a valuable new technique for the visualization of bonding structures such as a hybrid layer in dentin (Watson, 1989, 1991), In the case of seven commercially-available dentin bonding systems, it could be demonstrated that the CLSM renders considerably more detailed information than the SEM because of its nondestructive nature and because of the possibility of a distinction between components of bonding agents. With most of the bonding systems, measurements of the thickness of the hybrid layer could be carried out when the primer component was labeled with rhodamine B. It was found that this thickness is significantl…

0301 basic medicineMaterials scienceTime FactorsAnalytical chemistryDental bondingIn Vitro TechniquesComposite Resinslaw.inventionRhodamine03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemAcid Etching DentalConfocal microscopylawMicroscopyDentinmedicineRhodamine BHumansCeramicComposite materialDental EnamelDental LeakageMicroscopy ConfocalEnamel paintfungiDental Bonding030206 dentistryGeneral MedicineMolar030104 developmental biologymedicine.anatomical_structurechemistryMicroscopy FluorescenceInlaysvisual_artDentin-Bonding AgentsDentinvisual_art.visual_art_mediumAdvances in dental research
researchProduct

Handling Metalloproteinases.

2016

Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sen…

0301 basic medicineMetal ions in aqueous solutionGlutamic AcidMatrix metalloproteinaseHydrogen-Ion ConcentrationBiochemistryCombinatorial chemistryCatalysisMetal03 medical and health scienceschemistry.chemical_compoundZinc030104 developmental biologychemistryStructural Biologyvisual_artvisual_art.visual_art_mediumMetalloproteasesMoleculeImidazolePeptide bondAnimalsHumansAstacinHistidineCurrent protocols in protein scienceLiterature Cited
researchProduct

Molecular Mechanism of Inhibition of DNA Methylation by Zebularine

2017

In this work, we have analyzed the molecular mechanism of inhibition of a C5-DNA methyltransferase by zebularine using classical and QM/MM simulations. We found that the reaction proceeds with the addition of an unprotonated cysteine to the C6 position of the ring followed by methyl transfer to the C5 position. However, while the first step is reversible and presents a moderate free-energy barrier, the second step presents a large free-energy barrier, preventing the formation of the methylated complex. This mechanistic proposal agrees with recent experimental observations that point to the formation of a reversible covalent complex between DNA containing zebularine and methyltransferases. T…

0301 basic medicineMethyltransferaseStereochemistrySubstrate (chemistry)General ChemistryCatalysisQM/MM03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryZebularineCovalent bondDNACytosineCysteineACS Catalysis
researchProduct

Effect of Smear Clear and Some Other Commonly Used Irrigants on dislodgement resistance of Mineral Trioxide Aggregate to Root Dentin

2016

Background This study aimed to assess the push-out bond strength of mineral trioxide aggregate (MTA) to root canal dentin after irrigation with Smear Clear in comparison with 2.5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX) and saline as commonly used root canal irrigants. Material and Methods The coronal and mid-root areas of maxillary anterior teeth were horizontally sectioned into one-millimeter thick slices. The root canal lumen of dentinal slices was dilated using a diamond bur with 1.3 mm diameter. After the application of MTA, the samples were incubated in 100% humidity for 10 minutes and were then randomly divided into four groups (n=20) and immersed in Smear Clear, 2.5% NaO…

0301 basic medicineMineral trioxide aggregateRoot canalDentistryOperative Dentistry and Endodontics03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDentinmedicineGeneral DentistryAnterior teethUniversal testing machineBond strengthbusiness.industryResearchChlorhexidine030206 dentistry:CIENCIAS MÉDICAS [UNESCO]030104 developmental biologymedicine.anatomical_structurechemistrySodium hypochloriteUNESCO::CIENCIAS MÉDICASbusinessmedicine.drugJournal of Clinical and Experimental Dentistry
researchProduct

Chemoselective Dual Labeling of Native and Recombinant Proteins

2017

The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups. In order to ensure broader applicability of the functionalization strategy, a novel, short peptide sequence that introduces a disulfide bridge was designed and site-selective dual labeling in the presenc…

0301 basic medicineModels MolecularBiomedical EngineeringPharmaceutical ScienceBioengineering010402 general chemistry01 natural scienceslaw.inventionCell LineMaleimides03 medical and health scienceschemistry.chemical_compoundMiceBacterial ProteinslawAnimalsHumansReactivity (chemistry)CysteineSulfhydryl CompoundsSulfonesMaleimidePeptide sequenceDual labelingPharmacologychemistry.chemical_classificationStaining and LabelingCommunicationOrganic ChemistryDisulfide bondProteinsCombinatorial chemistryRecombinant Proteins0104 chemical sciencesAllyl CompoundsLuminescent Proteins030104 developmental biologychemistryThiolRecombinant DNASurface modificationInterleukin-2PeptidesBiotechnologyBioconjugate Chemistry
researchProduct

An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors

2020

Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism

0301 basic medicineModels MolecularBotulinum ToxinsDatabases FactualNeuromuscular transmissionQuantitative Structure-Activity RelationshipPharmacologymedicine.disease_cause01 natural sciencesType Alcsh:ChemistryModelsClostridium botulinumbotulinum neurotoxin ABotulismBotulinum Toxins Type Alcsh:QH301-705.5Spectroscopyfood and beveragesGeneral MedicineBotulinum neurotoxinComputer Science ApplicationsdockingPharmacophoreQuantitative structure–activity relationshipStatic ElectricityChemicalbotulinum neurotoxin A virtual screening docking 3D-QSAR molecular dynamicsMolecular Dynamics SimulationArticleCatalysisInorganic ChemistrySmall Molecule Libraries03 medical and health sciencesDatabasesmedicinePhysical and Theoretical ChemistryMolecular BiologyFactual3D-QSARVirtual screening010405 organic chemistrybusiness.industryfungiOrganic ChemistryMolecularHydrogen Bondingmedicine.diseasevirtual screeningmolecular dynamics0104 chemical sciences030104 developmental biologyModels Chemicallcsh:Biology (General)lcsh:QD1-999Docking (molecular)Clostridium botulinumbusinessInternational Journal of Molecular Sciences
researchProduct

pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin

2017

Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well…

0301 basic medicineModels MolecularCytoplasmNuclear TheoryMolecular ConformationInfrared spectroscopyIonic bondingProtonationBuffers010402 general chemistry53001 natural sciences03 medical and health sciencesDeprotonationSpectroscopy Fourier Transform InfraredMoleculeNuclear ExperimentMultidisciplinarybiologyChemistryWaterBacteriorhodopsinHydrogen-Ion Concentration0104 chemical sciencesKinetics030104 developmental biologyPNAS PlusChemical physicsCytoplasmTemporal resolutionBacteriorhodopsinsbiology.proteinPhysics::Accelerator PhysicsProtonsMetabolic Networks and PathwaysProtein Binding
researchProduct

Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

2017

Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabl…

0301 basic medicineModels MolecularDouble bondStereochemistryPhenylalanineCysteine Proteinase InhibitorsBiochemistryCathepsin CCathepsin CSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationship0302 clinical medicineDehydroalanineMoietyAnimalsSulfhydryl CompoundsBinding sitechemistry.chemical_classificationDipeptideAlanineBinding SitesDehydropeptidesDiastereomerEnzyme inhibitorsGeneral MedicineDipeptidesKinetics030104 developmental biologychemistryThiol addition030220 oncology & carcinogenesisCattleBiochimie
researchProduct