Search results for "boundary element"

showing 10 items of 171 documents

Frictionless contact-detachment analysis: iterative linear complementarity and quadratic programming approaches.

2012

The object of the paper concerns a consistent formulation of the classical Signorini’s theory regarding the frictionless contact problem between two elastic bodies in the hypothesis of small displacements and strains. The employment of the symmetric Galerkin boundary element method, based on boundary discrete quantities, makes it possible to distinguish two different boundary types, one in contact as the zone of potential detachment, called the real boundary, the other detached as the zone of potential contact, called the virtual boundary. The contact-detachment problem is decomposed into two sub-problems: one is purely elastic, the other regards the contact condition. Following this method…

Linear ComplementarityQuadratic ProgrammingApplied MathematicsMechanical EngineeringContact-detachmentMathematical analysisComputational MechanicsOcean EngineeringMixed boundary conditionSymmetric BEMLinear complementarity problemComplementarity (physics)Computational MathematicsSymmetric BEM Contact-detachment Linear Complementarity Quadratic ProgrammingComputational Theory and MathematicsFree boundary problemBoundary value problemQuadratic programmingSettore ICAR/08 - Scienza Delle CostruzioniGalerkin methodBoundary element methodMathematics
researchProduct

Boundary element method for magneto-electro-elastic laminates

2006

A boundary integral formulation and its numerical implementation are presented for the analysis of magneto-electro-elastic media. The problem is formulated by using a suitable set of generalized variables. The governing boundary integral equation is obtained by generalizing the reciprocity theorem to the magneto-electro-elasticity. The fundamental solutions are calculated through a modified Lekhnitskii’s approach, reformulated in terms of generalized magneto-electroelastic displacements. To assess the reliability and effectiveness of the formulation, some numerical analyses have been carried out and the convergence of the method has been studied. The multidomain approach has been developed …

Magneto-electro-elastic materialLaminatesBoundary element methodSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials

2013

Abstract In this study, a novel three-dimensional micro-mechanical crystal-level model for the analysis of intergranular degradation and failure in polycrystalline materials is presented. The polycrystalline microstructures are generated as Voronoi tessellations, that are able to retain the main statistical features of polycrystalline aggregates. The formulation is based on a grain-boundary integral representation of the elastic problem for the aggregate crystals, that are modeled as three-dimensional anisotropic elastic domains with random orientation in the three-dimensional space. The boundary integral representation involves only intergranular variables, namely interface displacement di…

Materials scienceCohesive-frictional lawComputational micromechanicComputational MechanicsGeneral Physics and Astronomy02 engineering and technologyIntergranular failureFracture toughnessPolycrystalline material0203 mechanical engineeringUltimate tensile strengthForensic engineeringComposite materialSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodBoundary element method.Coalescence (physics)Mechanical EngineeringMicromechanicsPolycrystalline materials; Computational micromechanics; Intergranular failure; Cohesive-frictional laws; Boundary element method.Intergranular corrosion021001 nanoscience & nanotechnologyComputer Science Applications020303 mechanical engineering & transportsMechanics of MaterialsGrain boundaryCrystallite0210 nano-technologyComputer Methods in Applied Mechanics and Engineering
researchProduct

An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials

2015

An enhanced three-dimensional (3D) framework for computational homogenization and intergranular cracking of polycrystalline materials is presented. The framework is aimed at reducing the computational cost of polycrystalline micro simulations, with an aim towards effective multiscale modelling. The scheme is based on a recently developed Voronoi cohesive-frictional grain-boundary formulation. A regularization scheme is used to avoid excessive mesh refinements often induced by the presence of small edges and surfaces in mathematically exact 3D Voronoi morphologies. For homogenization purposes, periodic boundary conditions are enforced on non-prismatic periodic micro representative volume ele…

Materials scienceComputational homogenizationComputational MechanicsOcean EngineeringTopologyHomogenization (chemistry)Polycrystalline materialComputational Theory and MathematicBoundary element methodPeriodic boundary conditionsSettore ING-IND/04 - Costruzioni E Strutture AerospazialiMicromechanicBoundary element methodbusiness.industryApplied MathematicsMechanical EngineeringMicromechanicsComputational mathematicsStructural engineeringApplied MathematicComputational MathematicsCrackingComputational Theory and MathematicsGrain boundaryVoronoi diagrambusinessMicrocrackingComputational Mechanics
researchProduct

Modelling of Pe C alloys solidification using the artificial heat source method

1997

Abstract In the paper the numerical solutions concerning the cast iron and also the carbon steel solidification are presented. In order to take into account the non-linearities appearing in differential equations describing the boundary-initial problem considered — a certain algorithm called the artificial heat source method has been used. The examples illustrating the possibilities of proposed method applications have been solved by means of the boundary element method, but the others numerical methods can be also utilized.

Materials scienceDifferential equationNumerical analysisMetallurgyMetals and AlloysSingular boundary methodBoundary knot methodIndustrial and Manufacturing EngineeringComputer Science ApplicationsModeling and SimulationAnalytic element methodCeramics and CompositesApplied mathematicsMethod of fundamental solutionsBoundary element methodNumerical partial differential equationsJournal of Materials Processing Technology
researchProduct

A micro-mechanical model for grain-boundary cavitation in polycrystalline materials

2015

In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the fea…

Materials scienceDiscretizationMechanical EngineeringMetallurgyNucleationTime evolutionMicromechanicsMechanicsCreepBoundary elementCreepPolycrystalline materialMechanics of MaterialsGrain boundary cavitationCavitationGeneral Materials ScienceGrain boundaryMechanics of MaterialCrystalliteMaterials Science (all)Settore ING-IND/04 - Costruzioni E Strutture AerospazialiMicromechanic
researchProduct

A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials

2013

Abstract A three-dimensional grain boundary formulation is presented for the analysis of polycrystalline microstructures. The formulation is based on a boundary integral representation of the elastic problem for the single grains of the polycrystalline aggregate and it is expressed in terms of the intergranular fields, namely displacements and tractions, that play an important role in polycrystalline micromechanics. The artificial polycrystalline morphology is represented using the Hardcore Voronoi tessellation, which is simple to generate and able to embody the main statistical features of polycrystalline microstructures. The details of the microstructure generation and meshing, which invo…

Materials scienceGeneral Computer ScienceDiscretizationGeneral Physics and AstronomyMicromechanicsGeneral ChemistryMechanicsHomogenization (chemistry)Material homogenizationCondensed Matter::Materials ScienceComputational MathematicsCrystallographyPolycrystalline materialMechanics of MaterialsCondensed Matter::SuperconductivityBoundary element methodGeneral Materials ScienceGrain boundaryCrystalliteAnisotropyVoronoi diagramSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodMicromechanic
researchProduct

A grain-scale model for high-cycle fatigue degradation in polycrystalline materials

2018

Abstract A grain-scale three-dimensional model for the analysis of fatigue intergranular degradation in polycrystalline materials is presented. The material microstructure is explicitly represented through Voronoi tessellations, of either convex or non-convex domains, and the mechanics of individual grains is modelled using a boundary integral formulation. The intergranular interfaces degrade under the action of cyclic loads and their behaviour is represented employing a cohesive zone model embodying a local irreversible damage parameter that evolves according to high-cycle continuum damage laws. The model is based on the use of a damage decomposition into static and cyclic contributions, a…

Materials scienceHigh-cycle fatigue02 engineering and technologyIndustrial and Manufacturing EngineeringModeling and simulation0203 mechanical engineeringPolycrystalline materialBoundary element methodGeneral Materials ScienceMechanics of MaterialBoundary element methodMechanical EngineeringMicromechanicsMechanicsMicro-mechanicIntergranular corrosion021001 nanoscience & nanotechnologyMicrostructureStrength of materialsCohesive zone model020303 mechanical engineering & transportsMechanics of MaterialsIntergranular degradationModeling and SimulationMaterials Science (all)0210 nano-technologyVoronoi diagram
researchProduct

Modelling intergranular and transgranular micro-cracking in polycrystalline materials

2018

Abstract In this work, a grain boundary formulation for intergranular and transgranular micro-cracking in three-dimensional polycrystalline aggregates is presented. The formulation is based on the displacement and stress boundary integral equations of solid mechanics and it has the advantage of expressing the polycrystalline problem in terms of grain boundary variables only. The individual grains within the polycrystalline morphology are modelled as generally anisotropic linear elastic domains with random spatial orientation. Transgranular micro-cracking is assumed to occur along specific cleavage planes, whose orientation in space within the grains depend upon the crystallographic lattice.…

Materials scienceIntergranular crackingComputational MechanicsPolycrystalline materialsGeneral Physics and Astronomy02 engineering and technologyMathematical SciencesTransgranular crackingEngineeringPolycrystalline material0203 mechanical engineeringMicro-mechanicsBoundary element methodComposite materialAnisotropyBoundary element methodMechanical EngineeringCohesive zone modellingApplied MathematicsLinear elasticityMetallurgyMicromechanicsMicro-mechanicIntergranular corrosion021001 nanoscience & nanotechnologyComputer Science Applications020303 mechanical engineering & transportsMechanics of MaterialsSolid mechanicsGrain boundaryCrystallite0210 nano-technology
researchProduct

Boundary Element Method for Composite Laminates

2017

The boundary element method (BEM) is a numerical technique to solve engineering/physical problems formulated in terms of boundary integral equations. Composite laminates are assemblages of stacked different materials layers, generally consisting of variously oriented fibrous composite materials

Materials scienceLaminate solution by BEMComposite laminatesComposite materialSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodBoundary integral equations and solution for composite laminate
researchProduct